equilibrium dissociation
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 43)

H-INDEX

37
(FIVE YEARS 3)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Alexey S. Kazakov ◽  
Evgenia I. Deryusheva ◽  
Andrey S. Sokolov ◽  
Maria E. Permyakova ◽  
Ekaterina A. Litus ◽  
...  

Erythropoietin (EPO) is a clinically significant four-helical cytokine, exhibiting erythropoietic, cytoprotective, immunomodulatory, and cancer-promoting activities. Despite vast knowledge on its signaling pathways and physiological effects, extracellular factors regulating EPO activity remain underexplored. Here we show by surface plasmon resonance spectroscopy, that among eighteen members of Ca2+-binding proteins of the S100 protein family studied, only S100A2, S100A6 and S100P proteins specifically recognize EPO with equilibrium dissociation constants ranging from 81 nM to 0.5 µM. The interactions occur exclusively under calcium excess. Bioinformatics analysis showed that the EPO-S100 interactions could be relevant to progression of neoplastic diseases, including cancer, and other diseases. The detailed knowledge of distinct physiological effects of the EPO-S100 interactions could favor development of more efficient clinical implications of EPO. Summing up our data with previous findings, we conclude that S100 proteins are potentially able to directly affect functional activities of specific members of all families of four-helical cytokines, and cytokines of other structural superfamilies.


2022 ◽  
Vol 53 (1) ◽  
Author(s):  
Yuru Guo ◽  
Chengcheng Huang ◽  
Hongyu Su ◽  
Zehui Zhang ◽  
Menghan Chen ◽  
...  

AbstractTrueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0–97.7% and 36.5–71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10–5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.


2021 ◽  
Author(s):  
Hye Rin Kim ◽  
Younghun Jung ◽  
Jonghyeok Shin ◽  
Myungseo Park ◽  
Dae-Hyuk Kweon ◽  
...  

Abstract Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC5328 BoNT/A1, referred to EGFP-A2ʹ and EGFP-RBDʹ, exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBDʹ to SV2C-LD was determined to be 5.45 mM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2ʹ, respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBDʹ to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2ʹ, respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBDʹ. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3897
Author(s):  
Luka Vanjur ◽  
Thomas Carzaniga ◽  
Luca Casiraghi ◽  
Giuliano Zanchetta ◽  
Francesco Damin ◽  
...  

The physical–chemical properties of the surface of DNA microarrays and biosensors play a fundamental role in their performance, affecting the signal’s amplitude and the strength and kinetics of binding. We studied how the interaction parameters vary for hybridization of complementary 23-mer DNA, when the probe strands are immobilized on different copolymers, which coat the surface of an optical, label-free biosensor. Copolymers of N, N-dimethylacrylamide bringing either a different type or density of sites for covalent immobilization of DNA probes, or different backbone charges, were used to functionalize the surface of a Reflective Phantom Interface multispot biosensor made of a glass prism with a silicon dioxide antireflective layer. By analyzing the kinetic hybridization curves at different probe surface densities and target concentrations in solution, we found that all the tested coatings displayed a common association kinetics of about 9 × 104 M−1·s−1 at small probe density, decreasing by one order of magnitude close to the surface saturation of probes. In contrast, both the yield of hybridization and the dissociation kinetics, and hence the equilibrium constant, depend on the type of copolymer coating. Nearly doubled signal amplitudes, although equilibrium dissociation constant was as large as 4 nM, were obtained by immobilizing the probe via click chemistry, whereas amine-based immobilization combined with passivation with diamine carrying positive charges granted much slower dissociation kinetics, yielding an equilibrium dissociation constant as low as 0.5 nM. These results offer quantitative criteria for an optimal selection of surface copolymer coatings, depending on the application.


Author(s):  
Osvaldo Burastero ◽  
Stephan Niebling ◽  
Lucas A. Defelipe ◽  
Christian Günther ◽  
Angelica Struve ◽  
...  

All biological processes rely on the formation of protein–ligand, protein–peptide and protein–protein complexes. Studying the affinity, kinetics and thermodynamics of binding between these pairs is critical for understanding basic cellular mechanisms. Many different technologies have been designed for probing interactions between biomolecules, each based on measuring different signals (fluorescence, heat, thermophoresis, scattering and interference, among others). Evaluation of the data from binding experiments and their fitting is an essential step towards the quantification of binding affinities. Here, user-friendly online tools to analyze biophysical data from steady-state fluorescence spectroscopy, microscale thermophoresis and differential scanning fluorimetry experiments are presented. The modules of the data-analysis platform (https://spc.embl-hamburg.de/) contain classical thermodynamic models and clear user guidelines for the determination of equilibrium dissociation constants (K d) and thermal unfolding parameters such as melting temperatures (T m).


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Angela M Phillips ◽  
Katherine R Lawrence ◽  
Alief Moulana ◽  
Thomas Dupic ◽  
Jeffrey Chang ◽  
...  

Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher-order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.


2021 ◽  
Vol 22 (16) ◽  
pp. 8604
Author(s):  
Young Soo Kim ◽  
Hwan-Suck Chung ◽  
Sang Gyun Noh ◽  
Bonggi Lee ◽  
Hae Young Chung ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 μM) than hACE2 receptor (1.12 μM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin’s interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2’s entry into human cells.


Blood ◽  
2021 ◽  
Author(s):  
Henrik Østergaard ◽  
Jacob Lund ◽  
Per Jr Greisen ◽  
Stine Kjellev ◽  
Anette Henriksen ◽  
...  

Hemophilia A (HA) is a bleeding disorder resulting from deficient Factor VIII (FVIII), which normally functions as a cofactor to activated Factor IX (FIXa) that facilitates activation of Factor X (FX). To mimic this property in a bispecific antibody (biAb) format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting biAb (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant (KD) of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with KD-values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by four orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation with potencies 13 and 18 times higher than a sequence-identical analog of emicizumab, respectively. A similar potency difference was observed in a tail-vein transection model in hemophilia A mice, while reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetics of Mim8 were investigated and a half-life of 14 days demonstrated in cynomolgus monkey. In conclusion, Mim8 is a FVIIIa-mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Sign in / Sign up

Export Citation Format

Share Document