stable cell lines
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Eftychia Vasili ◽  
Antonio Dominguez-Meijide ◽  
Manuel Flores-León ◽  
Mohammed Al-Azzani ◽  
Angeliki Kanellidi ◽  
...  

AbstractParkinson’s disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. Alpha-synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying the seeding of alpha-synuclein aggregation are still unclear. Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein preformed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein levels on seeding and aggregation. Our results indicate that the levels of alpha-synuclein define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson’s disease and other synucleinopathies.


2021 ◽  
Author(s):  
Eftychia Vasili ◽  
Antonio Dominguez-Meijide ◽  
Manuel Flores-Léon ◽  
Mohammed Al-Azzani ◽  
Angeliki Kanellidi ◽  
...  

Abstract Background: Parkinson's disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. Alpha-synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying the seeding of alpha-synuclein aggregation are still unclear.Methods: Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein pre-formed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein levels on seeding and aggregation. Results: Our results indicate that the levels of alpha-synuclein define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. Conclusions: The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson's disease and other synucleinopathies.


protocols.io ◽  
2021 ◽  
Author(s):  
maxime.smits not provided ◽  
Chris not provided Van den Haute ◽  
Veerle Baekelandt

protocols.io ◽  
2021 ◽  
Author(s):  
maxime.smits not provided ◽  
Chris Van den Haute

2021 ◽  
Author(s):  
Eftychia Vasili ◽  
Antonio Dominguez-Meijide ◽  
Manuel Flores-León ◽  
Mohammed Al-Azzani ◽  
Angeliki Kanellidi ◽  
...  

Abstract Background Parkinson's disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. alpha-Synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying alpha-synuclein spreading and accumulation remain obscure. Methods Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein pre-formed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein expression levels on seeding and aggregation. Results Our results indicate that alpha-synuclein levels define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. Conclusions The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson's disease and other synucleinopathies.


2020 ◽  
Vol 21 (10) ◽  
pp. 990-996
Author(s):  
Victoria Argentova ◽  
Teimur Aliev ◽  
Dmitry Dolgikh ◽  
Mikhail Kirpichnikov

Background: Immunoglobulin (Ig) G is the most commonly used therapeutic antibodies. Recently, the interest in IgA antibodies to treat respiratory infectious diseases has been increasing. The reason for the inefficient use of IgA is recombinant antibody aggregation in cell culture, affecting the longevity and productivity of cell lines. Lactate is an important metabolite that affects the cultivation of stable cell lines producing monoclonal antibodies. Methods: In the present study, we investigated whether different combinations of succinic acid and micro-additives affect lactate production, which correlates with productivity. The effect of succinic acid substitution on productivity of cells producing IgG/IgA was analyzed using the static culture method in a six-well plate. Lactate was measured in supernatant of cell culture indirectly by using the activity of Lactate Dehydrogenase (LDH).A low lactate level was observed in cultivation medium supplemented with succinic acid or asparagine combined with some inorganic salts. Result: The results also demonstrated the effect of component supplementation on homogeneity, longevity, and productivity of cell culture. Supplementation of succinic acid eliminated cell aggregation and improved homogeneity of stable cell lines producing IgG and, especially, IgA. Conclusion: Overall, succinic acid supplementation to the culture medium has potential biotechnological applications in the production IgG and IgA.


2020 ◽  
Author(s):  
Faryal Ijaz ◽  
Koji Ikegami

AbstractStable cell lines and animal models expressing tagged proteins are important tools for studying behaviors of cells and molecules. Several molecular biological technologies have been applied with varying degrees of success and efficiencies to establish cell lines expressing tagged proteins. Here we applied CRISPR/Cas9 for the knock-in of tagged proteins into the 5’UTR of the endogenous gene loci. With this 5’UTR-targeting knock-in strategy, stable cell lines expressing Arl13b-Venus, Reep6-HA, and EGFP-alpha-tubulin were established with high knock-in efficiencies ranging from 50 to 80%. The localization of the knock-in proteins were identical to that of the endogenous proteins in wild-type cells and showed homogenous expression. Moreover, the expression of knock-in EGFP-alpha-tubulin from the endogenous promoter was stable over long-term culture. We further demonstrated that the fluorescent signals were enough for a long time time-lapse imaging. The fluorescent signals were distinctly visible during the whole duration of the time-lapse imaging and showed specific subcellular localizations. Altogether, our strategy demonstrates that 5’UTR is a ‘hotspot’ for targeted insertion of gene sequences and allows the stable expression of tagged proteins from endogenous loci in mammalian cells.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 429 ◽  
Author(s):  
Kinga Grabowska ◽  
Magda Wąchalska ◽  
Małgorzata Graul ◽  
Michał Rychłowski ◽  
Krystyna Bieńkowska-Szewczyk ◽  
...  

Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.


Sign in / Sign up

Export Citation Format

Share Document