transmembrane peptides
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 2)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Oleg V. Kondrashov ◽  
Peter I. Kuzmin ◽  
Sergey A. Akimov

Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein–protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions—they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein–protein interactions in membrane domains with different bilayer thicknesses.


2021 ◽  
Vol 23 (1) ◽  
pp. 326
Author(s):  
Oleg V. Kondrashov ◽  
Sergey A. Akimov

Antimicrobial peptides (AMPs) are considered prospective antibiotics. Some AMPs fight bacteria via cooperative formation of pores in their plasma membranes. Most AMPs at their working concentrations can induce lysis of eukaryotic cells as well. Gramicidin A (gA) is a peptide, the transmembrane dimers of which form cation-selective channels in membranes. It is highly toxic for mammalians as being majorly hydrophobic gA incorporates and induces leakage of both bacterial and eukaryotic cell membranes. Both pore-forming AMPs and gA deform the membrane. Here we suggest a possible way to reduce the working concentrations of AMPs at the expense of application of highly-selective amplifiers of AMP activity in target membranes. The amplifiers should alter the deformation fields in the membrane in a way favoring the membrane-permeabilizing states. We developed the statistical model that allows describing the effect of membrane-deforming inclusions on the equilibrium between AMP monomers and cooperative membrane-permeabilizing structures. On the example of gA monomer-dimer equilibrium, the model predicts that amphipathic peptides and short transmembrane peptides playing the role of the membrane-deforming inclusions, even in low concentration can substantially increase the lifetime and average number of gA channels.


2021 ◽  
Author(s):  
Shuhei Kawamoto ◽  
Huihui Liu ◽  
Sangjae Seo ◽  
Yusuke Miyazaki ◽  
Mayank Dixit ◽  
...  

ABSTRACTA coarse-grained (CG) model for peptides and proteins was developed as an extension of the SPICA (Surface Property fItting Coarse grAined) force field (FF). The model was designed to examine membrane proteins that are fully compatible with the lipid membranes of the SPICA FF. A preliminary version of this protein model was created using thermodynamic properties, including the surface tension and density in the SPICA (formerly called SDK) FF. In this study, we improved the CG protein model to facilitate molecular dynamics (MD) simulation with a reproduction of multiple properties from both experiments and all-atom (AA) simulations. The side chain analogs reproduced the transfer free energy profiles across the lipid membrane and demonstrated reasonable dimerization free energies in water compared to those from AA-MD. A series of peptides/proteins adsorbed or penetrated into the membrane simulated by the CG-MD correctly predicted the penetration depths and tilt angles of peripheral and transmembrane peptides/proteins comparable to those in the orientation of protein in membrane (OPM) database. In addition, the dimerization free energies of several transmembrane helices within a lipid bilayer were comparable to those from experimental estimation. Application studies on a series of membrane protein assemblies, scramblases, and poliovirus capsids demonstrated a good performance of the SPICA FF.


ChemBioChem ◽  
2021 ◽  
Author(s):  
Meng Tang ◽  
Ruiyu Cao ◽  
Lingyu Du ◽  
Jikang Xu ◽  
Bin Wu ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8593
Author(s):  
Amita R. Sahoo ◽  
Matthias Buck

Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.


2021 ◽  
Vol 22 (9) ◽  
pp. 4711
Author(s):  
Yinjie Zhang ◽  
Boyang Jason Wu ◽  
Xiaolan Yu ◽  
Ping Luo ◽  
Hao Ye ◽  
...  

G-protein-coupled receptors (GPCRs), especially chemokine receptors, are ideal targets for monoclonal antibody drugs. Considering the special multi-pass transmembrane structure of GPCR, it is often a laborious job to obtain antibody information about off-targets and epitopes on antigens. To accelerate the process, a rapid and simple method needs to be developed. The split-ubiquitin-based yeast two hybrid system (YTH) was used as a blue script for a new method. By fusing with transmembrane peptides, scFv antibodies were designed to be anchored on the cytomembrane, where the GPCR was co-displayed as well. The coupled split-ubiquitin system transformed the scFv-GPCR interaction signal into the expression of reporter genes. By optimizing the topological structure of scFv fusion protein and key elements, including signal peptides, transmembrane peptides, and flexible linkers, a system named Antigen-Antibody Co-Display (AACD) was established, which rapidly detected the interactions between antibodies and their target GPCRs, CXCR4 and CXCR5, while also determining the off-target antibodies and antibody-associated epitopes. The AACD system can rapidly determine the association between GPCRs and their candidate antibodies and shorten the research period for off-target detection and epitope identification. This system should improve the process of GPCR antibody development and provide a new strategy for GPCRs antibody screening.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248634
Author(s):  
Yipeng Cao ◽  
Rui Yang ◽  
Imshik Lee ◽  
Wenwen Zhang ◽  
Jiana Sun ◽  
...  

Glioma is a lethal malignant brain cancer, and many reports have shown that abnormalities in the behavior of water and ion channels play an important role in regulating tumor proliferation, migration, apoptosis, and differentiation. Recently, new studies have suggested that some long noncoding RNAs containing small open reading frames can encode small peptides and form oligomers for water or ion regulation. However, because the peptides are difficult to identify, their functional mechanisms are far from being clearly understood. In this study, we used bioinformatics methods to identify and evaluate lncRNAs, which may encode small transmembrane peptides in gliomas. Combining ab initio homology modeling, molecular dynamics simulations, and free energy calculations, we constructed a predictive model and predicted the oligomer channel activity of peptides by identifying the lncRNA ORFs. We found that one key hub lncRNA, namely, DLEU1, which contains two smORFs (ORF1 and ORF8), encodes small peptides that form pentameric channels. The mechanics of water and ion (Na+ and Cl-) transport through this pentameric channel were simulated. The potential mean force of the H2O molecules along the two ORF-encoded peptide channels indicated that the energy barrier was different between ORF1 and ORF8. The ORF1-encoded peptide pentamer acted as a self-assembled water channel but not as an ion channel, and the ORF8 permeated neither ions nor water. This work provides new methods and theoretical support for further elucidation of the function of lncRNA-encoded small peptides and their role in cancer. Additionally, this study provides a theoretical basis for drug development.


2021 ◽  
Vol 153 (4) ◽  
Author(s):  
John Q. Yap ◽  
Jaroslava Seflova ◽  
Ryan Sweazey ◽  
Pablo Artigas ◽  
Seth L. Robia

The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.


Sign in / Sign up

Export Citation Format

Share Document