chromatin architecture
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 153)

H-INDEX

45
(FIVE YEARS 11)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Diyan Li ◽  
Chunyou Ning ◽  
Jiaman Zhang ◽  
Yujie Wang ◽  
Qianzi Tang ◽  
...  

AbstractFolliculogenesis is a complex biological process involving a central oocyte and its surrounding somatic cells. Three-dimensional chromatin architecture is an important transcription regulator; however, little is known about its dynamics and role in transcriptional regulation of granulosa cells during chicken folliculogenesis. We investigate the transcriptomic dynamics of chicken granulosa cells over ten follicular stages and assess the chromatin architecture dynamics and how it influences gene expression in granulosa cells at three key stages: the prehierarchical small white follicles, the first largest preovulatory follicles, and the postovulatory follicles. Our results demonstrate the consistency between the global reprogramming of chromatin architecture and the transcriptomic divergence during folliculogenesis, providing ample evidence for compartmentalization rearrangement, variable organization of topologically associating domains, and rewiring of the long-range interaction between promoter and enhancers. These results provide key insights into avian reproductive biology and provide a foundational dataset for the future in-depth functional characterization of granulosa cells.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Li Deng ◽  
Baibai Gao ◽  
Lun Zhao ◽  
Ying Zhang ◽  
Qing Zhang ◽  
...  

Abstract Background The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. Results Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete “transcriptional factory” foci in the evening, linking chromatin architecture to coordinated transcription outputs. Conclusion Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.


Cell Genomics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 100083 ◽  
Author(s):  
Alison C. McGarvey ◽  
Wolfgang Kopp ◽  
Dubravka Vučićević ◽  
Kenny Mattonet ◽  
Rieke Kempfer ◽  
...  

2021 ◽  
Vol 7 (51) ◽  
Author(s):  
Young Don Kwak ◽  
Timothy I. Shaw ◽  
Susanna M. Downing ◽  
Ambika Tewari ◽  
Hongjian Jin ◽  
...  

2021 ◽  
Author(s):  
Takeshi Sakuno ◽  
Sanki Tashiro ◽  
Hideki Tanizawa ◽  
Osamu Iwasaki ◽  
Da-Qiao Ding ◽  
...  

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of the cohesin-dependent axial structure in fission yeast, which forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the central elements. The results demonstrated that Rec8 cohesin is crucial for the formation of the loop-axis structure within the atypical SC. Furthermore, the Rec8-mediated loop-axis structure is formed in the absence of LinEs and provides a structural platform for aligning homologous chromosomes. We also identified a rec8 mutant that lost the ability to assemble the loop-axis structure without losing cohesion. Remarkably, this mutant showed defects in the LinE assembly, resulting in a significant reduction in meiotic recombination. Collectively, our results demonstrate an essential role for the Rec8-dependent loop-axis structure in LinE assembly, facilitating meiotic recombination.


Author(s):  
Suresh Kumar ◽  
Simardeep Kaur ◽  
Karishma Seem ◽  
Santosh Kumar ◽  
Trilochan Mohapatra

The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 855-855
Author(s):  
Eugene Khandros ◽  
Peng Huang ◽  
Scott A. Peslak ◽  
Malini Sharma ◽  
Osheiza Abdulmalik ◽  
...  

Abstract Reversal of the developmental switch from fetal (HbF, α 2γ 2) to adult (HbA,α 2β 2) hemoglobin is an important therapeutic approach for sickle cell disease (SCD) and β-thalassemia. It has been noted since the 1950s that a small number of circulating red blood cells, called F-cells, produce elevated levels of HbF; these cells are resistant to sickling and are present in increased numbers in patients with SCD and those treated with pharmacological HbF inducers such as hydroxyurea. Because successful therapy for SCD requires increasing the number of F-cells, it is imperative to understand how these cells arise. This can potentially occur through a shift towards a global fetal-like program, selective variation in levels of known HbF silencers such as BCL11A or LRF, or through discrete epigenetic changes at the β-globin locus. We previously began to address this clinically important question using a novel experimental approach of sorting cultured primary human erythroblasts into HbF-high (F-cell) and HbF-low (A-cell) populations (Khandros et al, Blood 2020). We showed that surprisingly, F-cells from healthy donor primary erythroid cultures have minimal transcriptional differences with A-cells. Unexpectedly, this was also the case when comparing responders (F-cells) and non-responders (A-cells) to treatment with the HbF inducers pomalidomide and hydroxyurea, and there were no differences in the expression of known HbF regulators. We therefore hypothesize that HbF synthesis in F-cells is determined by epigenetic variation confined to the β-globin locus (and not by global changes in the cell fate or nuclear milieu). To test this hypothesis, we compared genome wide chromatin accessibility by Assay for Transposase-Accessible Chromatin (ATAC-seq) in differentiation stage-matched F- and A-cells from healthy donor primary erythroid cultures, treated with vehicle, hydroxyurea, or pomalidomide. We observed striking similarities between F- and A-cells: out of 83,295 peaks called across all conditions, a mere five regions of differential accessibility were found, all at the β-globin locus (at the promoters and 3' UTR regions of the HBG1 and HBG2 genes as well as the BGLT3 non-coding RNA and HBBP1 pseudogene). This remarkable similarity in the global chromatin landscape between A- and F-cells cements the notion that these cells are fundamentally the same in terms of developmental and differentiation states, and that local epigenetic variation at the β-globin locus underlies the differences in HbF production. We also found that the gains in ATAC signal at the HBG1/2 genes were the most pronounced in F-cells from pomalidomide treated cultures, consistent with our finding that F-cells that arise following pomalidomide treatment have a higher content of HBG1/2 transcripts per cell. Drug treatments led to a larger number of changes in ATAC-seq peaks, at 123 and 1015 sites for treatment with hydroxyurea or pomalidomide, respectively, compared to vehicle. However, since differences at only 5 ATAC-seq peaks were observed between between F- and A-cells, we infer that the broader changes upon drug treatment are not needed for the phenotypic differences between F- and A-cells. Since transcription of the β-type globin genes is controlled by developmental stage-specific long-range contacts between the gene promoters and the locus control region (LCR), we determined whether the increase chromatin accessibility at the γ-globin genes in F-cells was associated with enhanced contacts with the LCR. Capture-C experiments revealed increased LCR-HBG1/2 promoter contacts and reduced LCR contacts with the adult HBB and HBD promoters in F-cells vs A-cells, demonstrating that local gains in chromatin accessibility are linked to long-range enhancer promoter contacts. Additionally, we did not detect differences in long-range chromatin contacts at several developmentally regulated genes, including LIN28B and BCL11A, solidifying the idea that γ-globin production in F-cells is specified locally through chromatin accessibility and chromatin architecture. In sum, our studies demonstrate that in adults, F-cells do not arise through reversion to a fetal like state or variation in expression of any known HbF regulator. Rather these cells reflect highly localized, perhaps stochastic modulation of chromatin architecture at the β-globin locus. Disclosures Blobel: Fulcrum Therapeutics, Inc.: Consultancy; Pfizer: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 284-284
Author(s):  
Zachary C. Murphy ◽  
Kristin Murphy ◽  
Michael Getman ◽  
Laurie A. Steiner

Abstract Terminal erythroid maturation is associated with dramatic changes in gene expression in the setting of a cell that is undergoing rapid division and nuclear condensation. Disruption of this process is associated with inherited anemias and myelodysplastic syndromes. Recent work from our laboratory revealed that terminal erythroid maturation is associated with a dramatic decline in the level of total and elongation competent RNA polymerase II (Pol II), and that control of pol II activity is a critical step in the regulation of gene expression during terminal erythroid maturation. We further demonstrated that HEXIM1, which is highly expressed in early erythroid cells compared to most other cell types (biogps.org; bloodspot.eu), is essential for erythropoiesis (Murphy Blood 2021). The goal of our current study is to understand the mechanisms by which HEXIM1 regulates erythroid gene expression. HEXIM1 can impact gene expression though multiple mechanisms, most notably by associating with pTEFb, which is required for release of "paused" pol II into active transcription (reviewed in Michels, Transcription, 2018). HEXIM1 can inhibit transcription through sequestration of pTEFb in the 7SK ribonuclear complex, rendering it incapable of facilitating pause release. Alternatively, it can activate transcription by delivering pTEFb to target loci (McNamara Genome Data 2016). In erythroid cells, disruption of HEXIM1 impaired the expression of many erythroid specific genes, such as GYPA and many of the heme synthesis enzymes, while overexpression (OE) of HEXIM1 promoted their expression (Murphy, Blood, 2021). We therefore hypothesized that in maturing erythroblasts, HEXIM1 targets pTEFb to erythroid specific genes, promoting the establishment of appropriate patterns of gene expression and facilitating terminal erythroid maturation. To address this hypothesis, we generated novel HUDEP2 lines that OE HEXIM1 with a tyrosine to alanine mutation (Y271A) that prevents phosphorylation of HEXIM1 and subsequent release of pTEFb (Mbonye Proteomics 2015). Biotinylated 7SK pulldown confirmed that the Y271A mutation maintains the ability to bind the 7SK complex in erythroid cell extracts and RNA immunoprecipitation confirmed that the Y271A mutation increases the affinity of HEXIM1 for the 7SK complex in HUDEP2 cells. The Y271A mutation has significant functional consequences in erythroid cells. OE of wild type (WT) HEXIM1 in HUDEP2 cells resulted in enhanced proliferation in both expansion and maturation conditions, which was accompanied by increased cell and nuclear size, and a dramatic increase in the level of CD235a. Similar to our previously published HEXIM1 mutant with tyrosine to phenylalanine mutations at residues 271 and 274, the Y271A HEXIM1 mutation abrogated the enhanced proliferation seen with HEXIM1 OE in both expansion and maturation conditions. The Y271A mutation also rescued the larger cell and nuclear area associated with HEXIM1 OE, as well as the dramatic increase in the level of CD235a. Conversely, disruption of HEXIM1 via genome editing resulted in poor expansion and viability of HUDEP2 cells, which was rescued by expression of WT but not Y271A mutated HEXIM1, highlighting the importance of HEXIM1-pTEFb interactions for erythroid proliferation and survival. Further, OE of WT HEXIM1, but not the Y271A mutant, promoted erythroid gene expression while facilitating repression of genes that are normally silenced during terminal maturation, such as RPS19. In cells expressing WT HEXIM1 these gene expression changes were accompanied by increases in the global levels of ser2 and ser5 phosphorylated Pol II, as well as genome wide changes in their distribution. In contrast, the Y271A mutant decreased the global level of ser2 and ser5 pol II, consistent with its reduced ability to release pTEFb at target genes. Intriguingly, levels of H3K79me2, a histone mark reflective of active transcription through gene bodies, were decreased with OE of both WT and Y271A mutant HEXIM1, suggesting that the ability of HEXIM1 to promote transcriptional activation or repression is context dependent. Together, these data demonstrate a critical role for HEXIM1 and its interaction with pTEFb and the 7SK complex in the establishment of appropriate patterns of gene expression and chromatin architecture in maturing erythroblasts. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xinyu Wu ◽  
Anlan Jiang ◽  
Jixin Wang ◽  
Shiyang Song ◽  
Yaping Xu ◽  
...  

With the breakthrough of chromatin conformation capture technologies in recent years, the importance of three-dimensional (3D) genome structure in gene expression, cell function regulation, disease occurrence, and development has been gradually recognized. To provide a comprehensive visualization of chromatin architecture and other multi-omics data for lung cancer research, we have constructed a comprehensive database, LungCancer3D (http://www.lungcancer3d.net). This web-based tool focuses on displaying human lung cancer-related HiC data along with a variety of other publicly available data, such as RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, DNA methylation, DNA mutation, and copy number variations. Researchers can visualize these diverse multi-omics data directly through the genome browser and discover how the genes expression is regulated at diverse levels. For example, we have demonstrated that the high expression level of C-MYC in lung cancer may be caused by the distant enhancer introduced by the de novo chromatin loops in lung cancer cells to bind the C-MYC promoter. The integrated multi-omics analyses through the LungCancer3D website can reveal the mechanisms underlying lung cancer development and provide potential targets for lung cancer therapy.


2021 ◽  
Author(s):  
Benjamin Lebeau ◽  
Maika Jangal ◽  
Tiejun Zhao ◽  
Cheng Kit Wong ◽  
Nolan Wong ◽  
...  

Abstract The contribution of deregulated chromatin architecture, including topologically associated domains (TADS), to cancer progression remains ambiguous. CTCF is a central regulator of higher-order chromatin structure that undergoes copy number loss in over half of all breast cancers, but the impact of this defect on epigenetic programming and chromatin architecture remains unclear. We find that under physiological conditions, CTCF organizes sub-TADs to limit the expression of oncogenic pathways, including PI3K and cell adhesion networks. Loss of a single CTCF allele potentiates cell invasion through compromised chromatin insulation and a reorganization of chromatin architecture and histone programming that facilitates de novo promoter-enhancer contacts. However, this change in the higher-order chromatin landscape leads to a vulnerability to inhibitors of mTOR. These data support a model whereby sub-TAD reorganization drives both the modification of histones at de novo enhancer promoter-contacts and transcriptional upregulation of oncogenic transcriptional networks.


Sign in / Sign up

Export Citation Format

Share Document