anisotropic properties
Recently Published Documents


TOTAL DOCUMENTS

507
(FIVE YEARS 104)

H-INDEX

37
(FIVE YEARS 6)

Author(s):  
Massimo Cuomo ◽  
Claude Boutin ◽  
Loredana Contrafatto ◽  
Salvatore Gazzo

2021 ◽  
Vol 2140 (1) ◽  
pp. 012018
Author(s):  
D Ya Sukhanov ◽  
A E Kuzovova

Abstract A method is proposed for the numerical simulation of acoustic processes in solids based on the particle dynamics approach for describing the anisotropic properties of a solid. It is proposed to consider a solid body in the form of an array of particles located in a cubic body-centered crystal lattice. To set the anisotropic properties of a solid, it is proposed to use its own proportionality force to shift coefficient for each direction. Based on the results of numerical simulation, the dependence of the longitudinal wave velocity on the direction is shown.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arvind K. Agrawal ◽  
R. Ganesh Narayanan

PurposeThe current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a strain mapping method is also presented to predict the end forming instabilities.Design/methodology/approachIn this work, FE simulation of end forming of raw tubes and FSPed AA6063-T6 tubes are done using Abaqus (explicit) incorporating anisotropic properties of the raw tube and FSPed zone. Actual thickness of the FSPed zone is also implemented. Expansion, reduction and beading are the end forming operations considered. Load requirement and instabilities are predicted. A new method “strain mapping method” is followed to predict the failure instabilities in expansion and beading, while during reduction, wrinkling is predicted by FE simulations. Lab scale experiments on FSP and end forming are done for validation at various rotational speeds.FindingsResults reveal that in the case of expansion and reduction of FSPed tubes, forming load predictions are accurate, while in beading, after initiation of bead, predictions are not accurate. Experimental observation on the type of instability is consistently predicted during numerical simulations. Prediction of displacement at failure by strain mapping method is encouraging in most of the cases including those that are FSPed. Hence, it is suggested that the method can be utilized to evaluate the onset of failure during tube expansion and beading.Originality/valueFE simulation methodology including anisotropic properties of raw tube and FSPed tubes is proposed, which is not attempted until now even for normal tubes. Strain mapping method is easy to implement for instability predictions, which is done usually by failure theories and forming limit diagram.


Author(s):  
Muhammad Musaddique Ali Rafique

With recent developments in fusion engineering, interest has sparked in development of fusion devices for deterrent. Enormous amount of energy generated by combining two light nuclei could be contained and manipulated at will to trigger and accelerate micro explosions (from shock wave, x-rays or ion beam focusing) which finally result in full scale blast. Materials required to make such device are critical. They must possess high strength, high hardness, ductility, formability, drawability, and anisotropic properties. High entropy alloys (HEA) are new class of materials which nicely fulfils this requirement. Essentially, they are solid solutions of multi principal elements (usually > 5) eliminating the need of base metal as in conventional alloys. This gives them many unique properties which may be tailored at will (heat treatment, cold rolling, precipitation, irradiation). They also exhibit excellent directional properties with formation of distinct bands along certain preferred crystallographic planes even in hexagonal close packed structures. These anisotropic properties are strong function of rolling, working, or forging (swaging) direction and can be utilized to benefit. This study encompasses making outer shell of a typical fusion device selected on the basis of the weight, which is a function of area of pay load bay of carrier aircraft.


2021 ◽  
pp. 2106459
Author(s):  
Nataliia S. Vorobeva ◽  
Alexey Lipatov ◽  
Angel Torres ◽  
Jun Dai ◽  
Jehad Abourahma ◽  
...  

Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 128-146
Author(s):  
Pinnaduwa H. S. W. Kulatilake

The presence of complex discontinuity patterns, the inherent statistical nature of their geometrical parameters, the uncertainties involved in the estimation of the discontinuity geometrical and geo-mechanical properties and complex three dimensional (3-D) in-situ stress make the accurate prediction of rock mass strength a difficult task. It has been a great challenge for the rock mechanics and rock engineering professions to develop a rock mass strength criterion in three dimensions that incorporates the effect of the minor and intermediate principal stresses and captures the scale dependent and anisotropic properties resulting from the discontinuity geometry parameters, such as the number of discontinuity sets, 3-D discontinuity intensity, and the distributions of the discontinuity orientation and size. Rock mechanics and rock engineering researchers have dealt with this topic for more than 55 years. The paper provides a critical review of the current state of the art regarding 3-D jointed rock mass strength criteria. The shortcomings of several rock mass strength criteria are discussed. The historic development of rock mass strength criteria that incorporate the effect of the minor and intermediate principal stresses and capture the scale dependent and anisotropic properties is presented. The most advanced 3-D rock mass strength criteria currently available in the literature are presented, including suggested future improvements.


2021 ◽  
pp. 132060
Author(s):  
Xiaofang Zhang ◽  
Tongping Zhang ◽  
Xue An ◽  
Mingjie Li ◽  
Danfeng Pei ◽  
...  

2021 ◽  
Vol 263 (1) ◽  
pp. 5253-5259
Author(s):  
Mathieu Gaborit ◽  
Huina Mao ◽  
Romain Rumpler ◽  
Peter Göransson

In the recent years, our team has been working to identify key aspects of anisotropy on porous media. More than just characterising their anisotropic properties, we're interested in generating cellular media with completely designed anisotropic properties. The results of these studies have partly been published and more are to come. In this presentation, we'll present an overview of this work and it ultimately ties to acoustics. We will introduce the key findings,discussed specific results that can be achieved and provide context and details related to the strategy developed to address the tasks.


Sign in / Sign up

Export Citation Format

Share Document