water resource planning
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 3)

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Terri Cook

The experimental design used in climate vulnerability assessments can strongly influence the assessments’ findings and skew decisions about which factors are most important for informing adaptation.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1138 ◽  
Author(s):  
Anurag Malik ◽  
Anil Kumar ◽  
Daniel Prakash Kushwaha ◽  
Ozgur Kisi ◽  
Sinan Q. Salih ◽  
...  

Among several components of watershed prioritization, morphometric parameters are considered to be essential elements for appropriate water resource planning and management. In the current study, nine hilly sub-watersheds are prioritized using novel hybrid model based on morphometric variables analysis at Bino Watershed (BW) located in the upper Ramganga basin, India. The proposed model is based on the hybridization of principal component analysis (PCA) with weighted-sum approach (WSA), presenting a single-frame methodology (PCWSA) for sub-watershed prioritization. The prioritization process was conducted based on several morphometric parameters including linear, areal, and shape. The PCA was performed to identify the significant correlated factor-loading matrix whereas WSA was established to provide the weights for the morphometric parameters and fix their priority ranking (PR) to be categorized based on compound factor value. The findings showed that 37.81% of total area is under highly susceptible zone sub-watersheds (SW-6 and SW-7). This is verifying the necessity for appropriate soil and water conservation measures for the area. The proposed hybrid methodology demonstrated a reliable approach for water resource planning and management, agriculture, and irrigation activities in the study region.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 395 ◽  
Author(s):  
Sang Kim ◽  
Xiao Yu

Water resource planning in a trans-boundary river basin is complex because of different institutional and scientific concerns and it may become increasingly difficult as a consequence of water scarcity caused by climate change. The analysis of discharge variations in a trans-boundary river basin is very important because the results can be key to resolve complex problems including decreased hydropower generation, degraded water quality, and deficient water supplies. Despite its importance, there are relatively few studies dealing with hydrological variation in a trans-boundary river basin. Therefore, this study used the hydrological sensitivity method to identify the discharge variation in the Hwacheon dam upper basin, a representative trans-boundary river basin between South Korea and North Korea. This particular basin was selected because the inflow into the Hwacheon dam in South Korea has decreased significantly after the construction of the Imnam dam in North Korea in 2000. The hydrological sensitivity method is a simple approach to analyze variations in discharge. After collecting 51 years (1967–2017) of rainfall and inflow data, a change point that represents an abrupt change in the time series was detected by using moving average, double-mass curve analysis, Pettitt’s test, and Bayesian change-point analysis. The change point detected by these methods was 1999. The hydrological sensitivity method using five Budyko-based functions was applied to a time series divided into before and after the detected change point. The average decrease after 1999 was 464.91 mm/y (or 1899 × 106 m3/y). Also, the maximum and minimum decreases after 1999 were 515.24 mm/y (or 2105 × 106 m3/y) and 435.32 mm/y (or 1778 × 106 m3/y), respectively. Because of the increase in rainfall and the decrease in inflow since 2000, the values determined in this study are slightly larger than those from conventional studies. Finally, it is suggested that the results from this study can be used effectively to establish reasonable water resource planning in the trans-boundary river basin between South Korea and North Korea.


Sign in / Sign up

Export Citation Format

Share Document