genomic resources
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 156)

H-INDEX

34
(FIVE YEARS 5)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Cornelius Nel ◽  
Phillip Gurman ◽  
Andrew Swan ◽  
Julius van der Werf ◽  
Margaretha Snyman ◽  
...  

Abstract Background South Africa and Australia shares multiple important sheep breeds. For some of these breeds, genomic breeding values are provided to breeders in Australia, but not yet in South Africa. Combining genomic resources could facilitate development for across country selection, but the influence of population structures could be important to the compatability of genomic data from varying origins. The genetic structure within and across breeds, countries and strains was evaluated in this study by population genomic parameters derived from SNP-marker data. Populations were first analysed by breed and country of origin and then by subpopulations of South African and Australian Merinos. Results Mean estimated relatedness according to the genomic relationship matrix varied by breed (-0.11 to 0.16) and bloodline (-0.08 to 0.06) groups and depended on co-ancestry as well as recent genetic links. Measures of divergence across bloodlines (FST: 0.04–0.12) were sometimes more distant than across some breeds (FST: 0.05–0.24), but the divergence of common breeds from their across-country equivalents was weak (FST: 0.01–0.04). According to mean relatedness, FST, PCA and Admixture, the Australian Ultrafine line was better connected to the SA Cradock Fine Wool flock than with other AUS bloodlines. Levels of linkage disequilibrium (LD) between adjacent markers was generally low, but also varied across breeds (r2: 0.14–0.22) as well as bloodlines (r2: 0.15–0.19). Patterns of LD decay was also unique to breeds, but bloodlines differed only at the absolute level. Estimates of effective population size (Ne) showed genetic diversity to be high for the majority of breeds (Ne: 128–418) but also for bloodlines (Ne: 137–369). Conclusions This study reinforced the genetic complexity and diversity of important sheep breeds, especially the Merino breed. The results also showed that implications of isolation can be highly variable and extended beyond breed structures. However, knowledge of useful links across these population substructures allows for a fine-tuned approach in the combination of genomic resources. Isolation across country rarely proved restricting compared to other structures considered. Consequently, research into the accuracy of across-country genomic prediction is recommended.


2022 ◽  
Author(s):  
Guibing Hu ◽  
Junting Feng ◽  
Xu Xiang ◽  
Jiabao Wang ◽  
Jarkko Salojärvi ◽  
...  

AbstractLychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Author(s):  
Romesh Kumar Salgotra ◽  
Rafiq Ahmad Bhat ◽  
Deyue Yu ◽  
Javaid Akhter Bhat

Abstract: Over the past two decades, the advances in the next generation sequencing (NGS) platforms have led to the identification of numerous genes/QTLs at high-resolution for their potential use in crop improvement. The genomic resources generated through these high-throughput sequencing techniques have been efficiently used in screening of particular gene of interest particularly for numerous types of plant stresses and quality traits. Subsequently, the identified-markers linked to a particular trait have been used in marker-assisted backcross breeding (MABB) activities. Besides, these markers are also being used to catalogue the food crops for detection of adulteration to improve the quality of food. With the advancement of technologies, the genomic resources are originating with new markers; however, to use these markers efficiently in crop breeding, high-throughput techniques (HTT) such as multiplex PCR and capillary electrophoresis (CE) can be exploited. Robustness, ease of operation, good reproducibility and low cost are the main advantages of multiplex PCR and CE. The CE is capable of separating and characterizing proteins with simplicity, speed and small sample requirements. Keeping in view the availability of vast data generated through NGS techniques and development of numerous markers, there is a need to use these resources efficiently in crop improvement programmes. In summary, this review describes the use of molecular markers in the screening of resistance genes in breeding programmes and detection of adulterations in food crops using high-throughput techniques.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2518
Author(s):  
Eliška Lukjanová ◽  
Jana Řepková

Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Pearce ◽  
Matthew W. Fraser ◽  
Ana M. M. Sequeira ◽  
Parwinder Kaur

Chondrichthyan species (sharks, rays, skates, and chimeras) are a class of high ecological, economic, and cultural significance, and yet they are the most threatened taxa in the marine environment. The creation of reference chromosome-length genome assemblies allows for conservation genomics methods, such as population and ecological genomics, to be utilized. Despite being greatly threatened and of great importance in maintaining ecosystem function, chondrichthyan species have been repeatedly absent from conservation-based genome sequencing projects. Less than 1% of these species have a genome sequence, despite their almost 50% either threatened or Data Deficient conservation status. Most notably, there are seven orders within this class without any genome representation. In this review, we identify gaps in chondrichthyan genomic resources and demonstrate how the lack of genomic resources for this major taxonomic class is limiting the conservation of these already difficult to conserve species. We highlight other applications for chondrichthyans genomics, such as evolutionary and developmental biology. Likely, the mismatching sampling protocols and limited computational skills and communication between fields have been preventing the integration of marine and molecular sciences. Here, we propose that this field is in dire need to move forward quickly to increase protection for marine species and ecosystems through improved collaboration between marine, molecular, and computer sciences.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fengzhi Bie ◽  
Yiming Li ◽  
Zhibin Liu ◽  
Meijing Qin ◽  
Shuping Li ◽  
...  

Xanthomonas citri pv. mangiferaeindicae (Xcm) is the causal agent of mango bacterial black spot which is present in many mango growing regions and leads to great economic losses to mango industry. Due to the limitation of high-quality genomic resources, little is known about the molecular pathogenesis of Xcm. Here, we used PacBio High Fidelity reads (HiFi) sequencing technology to sequence and analyze the whole genome of an Xcm strain GXG07 isolated from Guangxi, the largest mango growing region in China. PacBio HiFi reads with a mean coverage of 450× had been assembled into three contigs of 5,166,537, 79,634 and 30,169 bp, revealing that the genome of Xcm GXG07 contains one chromosome and two plasmids. This genome provides a resource to better understand the biology and pathogenicity of mango bacterial black spot.


Euphytica ◽  
2021 ◽  
Vol 217 (11) ◽  
Author(s):  
Waltram Ravelombola ◽  
Aurora Manley ◽  
Curtis Adams ◽  
Calvin Trostle ◽  
Srinivasulu Ale ◽  
...  
Keyword(s):  

2021 ◽  
Vol 55 (4) ◽  
pp. 285-294
Author(s):  
Fuminori KOBAYASHI ◽  
Tsuyoshi TANAKA ◽  
Hiroyuki KANAMORI ◽  
Jianzhong WU ◽  
Hirokazu HANDA

2021 ◽  
Author(s):  
Qi-Yue Zhou ◽  
Hui-Xia Cai ◽  
Zi-Han Liu ◽  
Lang-Xing Yuan ◽  
Lei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document