decoding complexity
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1392
Author(s):  
Zhiping Xu ◽  
Lin Wang ◽  
Shaohua Hong

In this paper, a joint early stopping criterion based on cross entropy (CE), named joint CE criterion, is presented for double-protograph low-density parity-check (DP-LDPC) codes-based joint source-channel coding (JSCC) systems in images transmission to reduce the decoding complexity and decrease the decoding delay. The proposed early stopping criterion adopts the CE from the output likelihood ratios (LLRs) of the joint decoder. Moreover, a special phenomenon named asymmetry oscillation-like convergence (AOLC) in the changing process of CE is uncovered in the source decoder and channel decoder of this system meanwhile, and the proposed joint CE criterion can reduce the impact from the AOLC phenomenon. Comparing to the counterparts, the results show that the joint CE criterion can perform well in the decoding complexity and decoding latency in the low–moderate signal-to-noise ratio (SNR) region and achieve performance improvement in the high SNR region with appropriate parameters, which also demonstrates that this system with joint CE is a low-latency and low-power system.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1675
Author(s):  
Hojun Kim ◽  
Yulong Shang ◽  
Seunghyeon Kim ◽  
Taejin Jung

In this paper, we propose new complex and real pair-wise detection for conventional differential space–time modulations based on quasi-orthogonal design with four transmit antennas for general QAM. Since the new complex and real pair-wise detections allow the independent joint ML detection of two complex and real symbol pairs, respectively, the decoding complexity is the same as or lower than conventional differential detections. Simulation results show that the proposed detections exhibit almost identical performance with an optimum maximum-likelihood receiver, as well as improved performance compared with conventional pair-wise detections, especially for higher modulation order.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 784
Author(s):  
Yu Fu ◽  
Hongwen Yang

Accurate estimation of channel log-likelihood ratio (LLR) is crucial to the decoding of modern channel codes like turbo, low-density parity-check (LDPC), and polar codes. Under an additive white Gaussian noise (AWGN) channel, the calculation of LLR is relatively straightforward since the closed-form expression for the channel likelihood function can be perfectly known to the receiver. However, it would be much more complicated for heterogeneous networks where the global noise (i.e., noise plus interference) may be dominated by non-Gaussian interference with an unknown distribution. Although the LLR can still be calculated by approximating the distribution of global noise as Gaussian, it will cause performance loss due to the non-Gaussian nature of global noise. To address this problem, we propose to use bi-Gaussian (BG) distribution to approximate the unknown distribution of global noise, for which the two parameters of BG distribution can easily be estimated from the second and fourth moments of the overall received signals without any knowledge of interfering channel state information (CSI) or signaling format information. Simulation results indicate that the proposed BG approximation can effectively improve the word error rate (WER) performance. The gain of BG approximation over Gaussian approximation depends heavily on the interference structure. For the scenario of a single BSPK interferer with a 5 dB interference-to-noise ratio (INR), we observed a gain of about 0.6 dB. The improved LLR estimation can also accelerate the convergence of iterative decoding, thus involving a lower overall decoding complexity. In general, the overall decoding complexity can be reduced by 25 to 50%.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chakir Aqil ◽  
Ismail Akharraz ◽  
Abdelaziz Ahaitouf

In this study, we propose a “New Reliability Ratio Weighted Bit Flipping” (NRRWBF) algorithm for Low-Density Parity-Check (LDPC) codes. This algorithm improves the “Reliability Ratio Weighted Bit Flipping” (RRWBF) algorithm by modifying the reliability ratio. It surpasses the RRWBF in performance, reaching a 0.6 dB coding gain at a Binary Error Rate (BER) of 10−4 over the Additive White Gaussian Noise (AWGN) channel, and presents a significant reduction in the decoding complexity. Furthermore, we improved NRRWBF using the sum of the syndromes as a criterion to avoid the infinite loop. This will enable the decoder to attain a more efficient and effective decoding performance.


Author(s):  
Rana A. Hassan ◽  
John P. Fonseka

Background: Low-density parity-check (LDPC) codes have received significant interest in a variety of communication systems due to their superior performance and reasonable decoding complexity. Methods: A novel collection of punctured codes decoding (CPCD) technique that considers a code as a collection of its punctured codes is proposed. Two forms of CPCD, serial CPCD that decodes each punctured code serially and parallel CPCD that decodes each punctured code in parallel, are discussed. Results: It is demonstrated that both serial and parallel CPCD have about the same decoding complexity compared with standard sum product algorithm (SPA) decoding. It is also demonstrated that while serial CPCD has about the same decoding delay compared with standard SPA decoding, parallel CPCD can decrease the decoding delay, however, at the expense of processing power. Conclusion: Numerical results demonstrate that CPCD can significantly improve the performance, or significantly increase the code rate of low-density parity-check (LDPC) codes.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


Author(s):  
Samer Alabed ◽  
Issam Maaz ◽  
Mohammad Al-Rabayah

Many coherent cooperative diversity techniques for wireless relay networks have recently been suggested to improve the overall system performance in terms of the achievable data rate or bit error rate (BER) with low decoding complexity and delay. However, these techniques require channel state information (CSI) at the transmitter side, at the receiver side, or at both sides. Therefore, due to the overhead associated with estimating CSI, distributed differential space-time coding techniques have been suggested to overcome this overhead by detecting the information symbols without requiring any (CSI) at any transmitting or receiving antenna. However, the latter techniques suffer from low performance in terms of BER as well as high latency and decoding complexity. In this paper, a distributed differential beamforming technique with power allocation is proposed to overcome all drawbacks associated with the later techniques without needing CSI at any antenna and to be used for cooperative communication networks. We prove through our analytical and simulation results that the proposed technique outperforms the state-of-the-art techniques in terms of BER with comparably low decoding complexity and latency.


Author(s):  
Sadjad Haddadi ◽  
Mahmoud Farhang ◽  
Mostafa Derakhtian

Abstract We propose a method to substantially reduce the computational complexity of iterative decoders of low-density parity-check (LDPC) codes which are based on the weighted bit-flipping (WBF) algorithm. In this method, the WBF-based decoders are modified so that the flipping function is calculated only over a reduced set of variable nodes. An explicit expression for the achieved complexity gain is provided and it is shown that for a code of block length N, the decoding complexity is reduced from O(N2) to O(N). Moreover, we derive an upper bound for the difference in the frame error rate of the reduced-set decoders and the original WBF-based decoders, and it is shown that the error performances of the two decoders are essentially the same.


Sign in / Sign up

Export Citation Format

Share Document