bulk amorphous alloys
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 17)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Lingyun ◽  
Xu Shenpeng ◽  
Lou Yan

Bulk amorphous alloys have some good mechanical properties due to their special atomic arrangement and are now popular in the field of materials. Zr-based amorphous alloys have good mechanical properties, but they are different from lattice slip materials with high ductility. When these materials are compressed and deformed, it generates a concentrated elastic force in the shear zone that causes instantaneous amorphous fracture. The extremely poor plasticity of Zr-based amorphous materials highlight their shortcomings and make them difficult to use in engineering applications. In this paper, it is found that the plasticity of Zr-based amorphous alloys is enhanced to a certain extent by intermittent ultrasonic vibration-assisted compression (IUVC). The ultrasonic vibration stress of IUVC can increase the extra free volume of Zr-based amorphous alloys and increase their degree of “rejuvenation”, which is manifested as an increase in plasticity. To explore how IUVC affects the plasticity of Zr-based amorphous alloys, we design experiments to analyse the effects of different intermittent times, pre-pressures and ultrasonic amplitudes on the plasticity of amorphous alloys.


2021 ◽  
Vol 8 ◽  
Author(s):  
YaQi Wu ◽  
Yong Zhang ◽  
Tao Zhang

Since the emergence of amorphous alloys as a new class of materials, efficiency improvements have been made in optimizing the fabrication process, the mechanization of alloy formation, and the size of the alloys themselves. Amorphous alloys have been used in precision instruments as they possess excellent magnetic properties, corrosion resistance, wear resistance, high strength, hardness, toughness, high electrical resistivity, and electromechanical coupling properties. Because their hysteresis losses are lower than those of traditional transformer cores, the conversion efficiency of equipment has been significantly improved, thereby saving energy and protecting the environment. Hence, amorphous iron cores have replaced traditional materials. Amorphous alloys also show excellent performance as anti-corrosion and wear-resistant coatings. The process of preparing amorphous alloys starts with an amorphous alloy film obtained by evaporation deposition and then proceeds to the use of a high cooling rate ribbon spinning method to finally obtain a thin strip of an amorphous alloy. A widely used method of copper mold suction casting is then used to prepare the bulk amorphous alloy. The sizes of amorphous alloys have been continually increasing, which has resulted in increasingly serious challenges, such as cooling rate and thermal stability limitations. In addition, crystals can form at low cooling rates. The latent heat of crystallization is released when crystals are formed, which causes damage to the amorphous area so that the size of amorphous alloys is reduced. Because of these difficulties, new processes that eliminate the cooling rate gradient, such as 3D additive manufacturing, ultrasonic production, and mold design, combined with the concept of “entropy control” component design and the economic theory of “balanced development,” lead to a three-dimensional bulk amorphous alloy being proposed. The theory of balanced growth provides a new concept for the development and application of bulk amorphous alloys. This review offers a retrospective view of recent studies of amorphous alloys and provides a description of the formation of amorphous alloys and amorphous phases and the criteria required to predict the successful formation of amorphous alloys. Then, we address the problem of size limitation confronting current production methods. The three-dimensional balanced growth theory of bulk amorphous alloys was formulated from a flexible adaptation of the balanced growth theory of economics. We have confidence that the production and development of bulk amorphous alloys have a bright future.


2021 ◽  
Vol 139 (5) ◽  
pp. 582-585
Author(s):  
P. Sikora ◽  
M. Nabiałek ◽  
K. Błoch ◽  
J. Gondro ◽  
A.V. Sandu ◽  
...  

2020 ◽  
Vol 138 (2) ◽  
pp. 196-199
Author(s):  
K. Jeż ◽  
M. Nabiałek ◽  
S. Walters ◽  
A.V. Sandu ◽  
B. Jeż

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 846
Author(s):  
Katarzyna Błoch ◽  
Marcin Nabiałek ◽  
Przemysław Postawa ◽  
Andrei Victor Sandu ◽  
Agata Śliwa ◽  
...  

Amorphous Fe- and Co-based alloys possess so-called soft magnetic properties. Due to the high sensitivity of the magnetisation vector to any inhomogeneities occurring in these alloys, it is possible to assess indirectly structural defects. This paper presents the results of research on the structure and magnetic properties of bulk amorphous alloys with a high content of Fe and Co. The magnetic properties of the produced alloys were tested using a Faraday magnetic balance and a vibrating sample magnetometer (VSM). Analysis of the magnetisation process in the region known as the approach to ferromagnetic saturation was carried out in accordance with Kronmüller’s theorem. Magnetisation in magnetic fields of greater than the effective anisotropy field (Holstein-Primakoff para-process) was also studied. For the studied alloys, it was found that an increase in Fe content causesan increase in saturation magnetisation, and decreases in the values of the coercive field and thespin-wave stiffness parameter, Dspf. A relationship was observed between the width of the amorphous halo and the value of the coercive field. However, no significant links were found between either the presence of structural defects and the properties of these materials, or between the Co content and the value of the coercive field.


Sign in / Sign up

Export Citation Format

Share Document