water isotopologues
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Janica C. Bühler ◽  
Josefine M. Axelsson ◽  
Franziska A. Lechleitner ◽  
Jens Fohlmeister ◽  
Allegra N. LeGrande ◽  
...  

Abstract. The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modelled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modelled water isotopologues, and indeed the diversity of their representation in different models are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable paleoclimate archive and provide well preserved (semi-)continuous multivariate isotope time series in the lower and mid-latitudes, and are, therefore, well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationship between speleothem oxygen and carbon isotopes to climate variables also depends on site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and AnaLysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 common era, CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for both modelled and measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modelled temperatures. At low latitudes, precipitation amount is the dominant driver for water isotope variability, however, at cave locations the agreement between modelled temperature variability is higher than for precipitation variability. While modelled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes, and may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems, although to varying extent. We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach, whenever comparing proxy data to modelled data. Considering karst and cave internal processes through e.g. isotope-enabled karst models may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using e.g. different isotopes, different climate archives, or time periods.


2021 ◽  
Vol 154 (24) ◽  
pp. 244306
Author(s):  
Emmanouil Kechaoglou ◽  
Katerina Ferentinou ◽  
Spyridon Kaziannis ◽  
Constantine Kosmidis

2021 ◽  
Author(s):  
Meissa Diouf ◽  
Attila Császár ◽  
Roland Tóbiás ◽  
Cristina Puzzarini ◽  
Mattia Melosso ◽  
...  

2021 ◽  
Author(s):  
Jonas Hamperl ◽  
Myriam Raybaut ◽  
Jean-Baptiste Dherbecourt ◽  
Patrick Chazette ◽  
Julien Totems ◽  
...  

<p>Improved understanding of the variability underlying the distribution of stable water isotopologues in the troposphere, using both observations and modelling, has proven to be invaluable to study processes related to the hydrological cycle on a local as well as global scale. To date though, existing observation means (CRDS from ground-based or airborne platforms, passive remote sensing from space) only provide a partial picture of the complexity of the process at play due to their limited spatial or temporal coverage. On the other hand, laser active remote sensing, and in particular differential absorption lidars (DIAL) can deliver reliable, continuous, highly resolved (150 m, 10 min) profiles of H<sub>2</sub><sup>16</sup>O and HD<sup>16</sup>O in the lower troposphere, thereby providing observational insights into small scale processes such as evapotranspiration above continental surfaces and mixing in the planetary boundary layer.</p><p>Such a lidar system is currently in development (WaVIL project funded by ANR) that will operate at 1.98 µm where water isotopologues exhibit close but distinct absorption features, sensitive photodetectors are commercially available, and where pulsed laser emission over 10 mJ can be achieved using for instance parametric conversion.</p><p>In order to assess the expected instrument performances and to evaluate the potential of a ground-based system for simultaneous measurement of H<sub>2</sub><sup>16</sup>O and HD<sup>16</sup>O, we performed an error budget based on an end-to-end simulator. Lidar backscatter signals were simulated for different instrument-specific and atmospheric parameters. On the instrument side, calculations were performed for a commercial InGaAs PIN photodiode and for a state of the art low-noise HgCdTe avalanche photodiode. The sensitivity to environmental factors was investigated exemplarily for mid-latitude, arctic, and tropical environments where both vertical water vapor and aerosol variability were accounted for. Vertical profiles of aerosol extinction and backscatter coefficients were derived from the AERONET database (https://aeronet.gsfc.nasa.gov/) and extrapolated to the 2 µm spectral region, taking statistical seasonality into account. Performance simulations have been also conducted using vertical profiles derived from a field campaign where water vapor isotopologue concentrations and aerosol extinction were measured. We will outline the majority biases for such a lidar system and how statistical errors can be mitigated in a view of a forthcoming airborne DIAL instrument.</p>


2021 ◽  
Author(s):  
Tim Trent ◽  
Hartmut Boesch ◽  
Peter Somkuti ◽  
Mathhias Schneider ◽  
Farahnaz Khosrawi ◽  
...  

<p>Atmospheric moisture is a crucial factor for the redistribution of heat in the atmosphere, with a strong coupling between atmospheric circulation and moisture pathways responsible most climate feedback mechanisms. Conventional satellite and in situ measurements provide information on water vapour content and vertical distribution; however, observations of water isotopologues make a unique contribution to a better understanding of this coupling.</p><p>In recent years, observations of water vapour isotopologue from satellites have become available from nadir thermal infrared measurements (TES, AIRS, IASI) which are sensitive to the free troposphere and from shortwave-infrared (SWIR) sensors (GOSAT, SCIAMACHY) that provide column-averaged concentrations including sensitivity to the boundary layer. The TROPOMI instrument on-board Sentinel 5P (S5p) measures SWIR radiance spectra that allow retrieval of water isotopologue columns but with much improved spatial and temporal coverage compared to other SWIR sensors promising a step-change for scientific and operational applications.</p><p>Here we present the retrieval algorithm development for stable water isotopologues from TROPOMI as part of the ESA S5p Innovation programme.  We also discuss the validation of these types of satellite products with fiducial in situ measurements, and challenges compared with other satellite measurements. Finally, we outline the roadmap for assessing the impact of TROPOMI data against state-of-the-art isotope enabled models.</p>


2021 ◽  
Author(s):  
Joel Arnault ◽  
Gerlinde Jung ◽  
Barbara Haese ◽  
Benjamin Fersch ◽  
Thomas Rummler ◽  
...  

<p>Water isotopologues, as natural tracers of the hydrological cycle on Earth, provide a unique way to assess the skill of climate models in representing realistic atmospheric and terrestrial water pathways. In the last decades, many global and regional models have been developed to represent water isotopologues and enable a direct comparison with observed isotopic concentrations. This study presents the recently developed regional model, WRF-Hydro-iso, which is a version of the coupled atmospheric – hydrological modeling system WRF-Hydro enhanced with a joint soil-vegetation-atmospheric description of water isotopologues motions. WRF-Hydro-iso is applied to two regions in Europe and Southern Africa under present climate condition. The setup includes an outer domain with a 10 km grid-spacing, an inner domain with a 5 km grid-spacing, and a subdomain with a 500 m grid spacing that can be coupled with the inner domain in order to represent lateral terrestrial water flow. A 10-year slice is simulated for 2003-2012, using ERA5 reanalyses for the boundary condition. The boundary condition of the isotopic variables is specifically provided with climatological values deduced from a 10-year simulation with the Community Earth System Model Version 1. For both Europe and Southern Africa, WRF-Hydro-iso realistically reproduces the climatological variations of the isotopic concentrations δ<sub>P</sub><sup>18</sup>O and δ<sub>P</sub><sup>2</sup>H from the Global Network of Isotopes in Precipitation. In a sensitivity analysis, it is found that land surface evaporation fractionation increases the isotopic concentrations in the rootzone soil moisture and slightly decreases the isotopic concentrations in precipitation, an effect that is modulated by the change in evaporation – transpiration partitioning caused by lateral terrestrial water flow. The ability of WRF-Hydro-iso to account for a detailed description of terrestrial water transport makes it as a good candidate for the dynamical downscaling of global paleoclimate simulations and for the comparison to isotopic measurements in proxy data such as plant wax fossils.</p>


2020 ◽  
Vol 49 (4) ◽  
pp. 043103
Author(s):  
Tibor Furtenbacher ◽  
Roland Tóbiás ◽  
Jonathan Tennyson ◽  
Oleg L. Polyansky ◽  
Aleksandra A. Kyuberis ◽  
...  

2020 ◽  
Vol 17 (19) ◽  
pp. 4853-4870
Author(s):  
Hannes P. T. De Deurwaerder ◽  
Marco D. Visser ◽  
Matteo Detto ◽  
Pascal Boeckx ◽  
Félicien Meunier ◽  
...  

Abstract. Stable isotopologues of water are widely used to derive relative root water uptake (RWU) profiles and average RWU depth in lignified plants. Uniform isotope composition of plant xylem water (δxyl) along the stem length of woody plants is a central assumption of the isotope tracing approach which has never been properly evaluated. Here we evaluate whether strong variation in δxyl within woody plants exists using empirical field observations from French Guiana, northwestern China, and Germany. In addition, supported by a mechanistic plant hydraulic model, we test hypotheses on how variation in δxyl can develop through the effects of diurnal variation in RWU, sap flux density, diffusion, and various other soil and plant parameters on the δxyl of woody plants. The hydrogen and oxygen isotope composition of plant xylem water shows strong temporal (i.e., sub-daily) and spatial (i.e., along the stem) variation ranging up to 25.2 ‰ and 6.8 ‰ for δ2H and δ18O, respectively, greatly exceeding the measurement error range in all evaluated datasets. Model explorations predict that significant δxyl variation could arise from diurnal RWU fluctuations and vertical soil water heterogeneity. Moreover, significant differences in δxyl emerge between individuals that differ only in sap flux densities or are monitored at different times or heights. This work shows a complex pattern of δxyl transport in the soil–root–xylem system which can be related to the dynamics of RWU by plants. These dynamics complicate the assessment of RWU when using stable water isotopologues but also open new opportunities to study drought responses to environmental drivers. We propose including the monitoring of sap flow and soil matric potential for more robust estimates of average RWU depth and expansion of attainable insights in plant drought strategies and responses.


2020 ◽  
Vol 756 ◽  
pp. 137835
Author(s):  
Emmanouil Kechaoglou ◽  
Constantine Kosmidis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document