grade estimation
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol 8 (1) ◽  
pp. 1-23
Author(s):  
Raymond Leung ◽  
Alexander Lowe ◽  
Anna Chlingaryan ◽  
Arman Melkumyan ◽  
John Zigman

This article presents a Bayesian framework for manipulating mesh surfaces with the aim of improving the positional integrity of the geological boundaries that they seek to represent. The assumption is that these surfaces, created initially using sparse data, capture the global trend and provide a reasonable approximation of the stratigraphic, mineralization, and other types of boundaries for mining exploration, but they are locally inaccurate at scales typically required for grade estimation. The proposed methodology makes local spatial corrections automatically to maximize the agreement between the modeled surfaces and observed samples. Where possible, vertices on a mesh surface are moved to provide a clear delineation, for instance, between ore and waste material across the boundary based on spatial and compositional analysis using assay measurements collected from densely spaced, geo-registered blast holes. The maximum a posteriori (MAP) solution ultimately considers the chemistry observation likelihood in a given domain. Furthermore, it is guided by an a priori spatial structure that embeds geological domain knowledge and determines the likelihood of a displacement estimate. The results demonstrate that increasing surface fidelity can significantly improve grade estimation performance based on large-scale model validation.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Reza Shamsi ◽  
Hesam Dehghani ◽  
Mohammad Jalali ◽  
Behshad Jodeiri Shokri

2021 ◽  
Vol 21 (1) ◽  
pp. 31-44
Author(s):  
C. A. Abuntori ◽  
S. Al-Hassan ◽  
D. Mireku-Gyimah

Resource estimation techniques have upgraded over the past couple of years, thereby improving resource estimates. The classical method of estimation is less used in ore grade estimation than geostatistics (kriging) which proved to provide more accurate estimates by its ability to account for the geology of the deposit and assess error. Geostatistics has therefore been said to be superior over the classical methods of estimation. However, due to the complexity of using geostatistics in resource estimation, its time-consuming nature, the susceptibility to errors due to human interference, the difficulty in applying it to deposits with few data points and the difficulty in using it to estimate complicated deposits paved the way for the application of Artificial Intelligence (AI) techniques to be applied in ore grade estimation. AI techniques have been employed in diverse ore deposit types for the past two decades and have proven to provide comparable or better results than those estimated with kriging. This research aimed to review and compare the most commonly used kriging methods and AI techniques in ore grade estimation of complex structurally controlled vein deposits. The review showed that AI techniques outperformed kriging methods in ore grade estimation of vein deposits.   Keywords: Artificial Intelligence, Neural Networks, Geostatistics, Kriging, Mineral Resource, Grade


2021 ◽  
Vol 20 (2) ◽  
pp. 56-71
Author(s):  
Clara Akalanya Abuntori ◽  
Sulemana Al-Hassan ◽  
Daniel Mireku-Gyimah ◽  
Yao Yevenyo Ziggah

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhan-Ning Liu ◽  
Xiao-Yan Yu ◽  
Li-Feng Jia ◽  
Yuan-Sheng Wang ◽  
Yu-Chen Song ◽  
...  

AbstractIn order to study the influence of distance weight on ore-grade estimation, the inverse distance weighted (IDW) is used to estimate the Ni grade and MgO grade of serpentinite ore based on a three-dimensional ore body model and related block models. Manhattan distance, Euclidean distance, Chebyshev distance, and multiple forms of the Minkowski distance are used to calculate distance weight of IDW. Results show that using the Minkowski distance for the distance weight calculation is feasible. The law of the estimated results along with the distance weight is given. The study expands the distance weight calculation method in the IDW method, and a new method for improving estimation accuracy is given. Researchers can choose different weight calculation methods according to their needs. In this study, the estimated effect is best when the power of the Minkowski distance is 3 for a 10 m × 10 m × 10 m block model. For a 20 m × 20 m × 20 m block model, the estimated effect is best when the power of the Minkowski distance is 9.


Sign in / Sign up

Export Citation Format

Share Document