somatic cell counts
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 47)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Vol 5 ◽  
pp. 146
Author(s):  
Jack D. Rust ◽  
Michael J. Christian ◽  
Ciara J. Vance ◽  
Muhammed B. Bolajoko ◽  
Johanna Wong ◽  
...  

Background:  The California mastitis test (CMT) is a simple cow-side indicator of the somatic cell count (SCC) in milk, providing a useful tool in identifying cases of subclinical mastitis in cattle. Mastitis, and in particular subclinical mastitis, is a major concern in Ethiopia and Nigeria, yet detection is challenging due to cost and access to commercial CMT reagents. Methods: Commercially available domestic detergents from Ethiopia and Nigeria were compared (n = 3 for each country) with the UK commercial CMT reagent in their ability to detect high SCC (>400,000 cells/ml milk).  Sensitivity and specificity of the CMT test were calculated for the different detergents and positive and negative predictive values were established. Results:  The average sensitivities of the tests ranged from 28-75% for the Ethiopian detergents and 68-80% for the Nigerian detergents, compared to 76% for the UK domestic detergent.  Test specificities were 84-98%, 93-97% and 96%, respectively. Conclusions:  Overall, the detergents demonstrated higher specificity than sensitivity.  Nigerian detergents performed better than the Ethiopian products, however, the study identified suitable domestic detergents from both Ethiopia and Nigeria, comparable to the UK commercial CMT reagent, and we recommend their use as alternative CMT reagents for livestock-keepers to aid in cost-effective diagnosis of mastitis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tadeusz Zabolewicz ◽  
Paulina Puckowska ◽  
Paweł Brym ◽  
Kamil Oleński ◽  
Stanisław Kamiński

Abstract Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.


2021 ◽  
pp. 1-7
Author(s):  
Daphne T. Lianou ◽  
Charalambia K. Michael ◽  
Natalia G.C. Vasileiou ◽  
Efthimia Petinaki ◽  
Peter J. Cripps ◽  
...  

Abstract Dairy goat farming is an important sector of the agricultural industry in Greece, with an annual total milk production exceeding 450 000 l and accounting for over 25% of all goat milk produced in the European Union; this milk is used mainly for cheese production. Despite the importance of goat milk for the agricultural sector in Greece, no systematic countrywide investigations in the bulk-tank milk of goats in Greece have been reported. Objectives were to investigate somatic cell counts (SCC) and total bacterial counts (TBC) in raw bulk-tank milk of goat herds in Greece, study factors influencing SCC and TBC therein and evaluate their possible associations with milk content. Throughout Greece, 119 dairy goat herds were visited for milk sampling for somatic cell counting, microbiological examination and composition measurement. Geometric mean SCC and TBC were 0.838 × 106 cells ml−1 and 581 × 103 cfu ml−1, respectively. Multivariable analyses revealed annual frequency of check-ups of milking system and total milk quantity per goat (among 53 variables) to be significant for increased SCC; no factor emerged (among 58 variables) to be significant for increased TBC. Negative correlation of SCC with total protein was found; mean total protein content in the bulk-tank milk in herds with SCC >0.75 × 106 cells ml−1 was 5.1% lower and in herds with SCC >1.5 × 106 cells ml−1, it was 7.8% lower.


2021 ◽  
Vol 11 (16) ◽  
pp. 7356
Author(s):  
Daphne T. Lianou ◽  
Charalambia K. Michael ◽  
Natalia G. C. Vasileiou ◽  
Dimitra V. Liagka ◽  
Vasia S. Mavrogianni ◽  
...  

The objective was to describe potential associations of somatic cell counts (SCC) and total bacterial counts (TBC) in bulk-tank milk from sheep and goat farms with breeds of these animals in Greece. In total, 325 dairy sheep flocks and 119 dairy goat herds were visited for the collection of milk; the breed of animals in farms was evaluated for a potential association with SCC or TBC. The most frequently seen sheep breeds were the Lacaune (95 flocks) and the Chios (44 flocks). The most frequently seen goat breeds were the indigenous Greek (Capra prisca) (50 herds) and the Murciano-Granadina (13 herds). In a multivariable analysis, the breed and the application of machine-milking in sheep flocks, and the breed and the management system in goat herds emerged as significant factors for increased SCC (>0.75 × 106 cells mL−1) in bulk-tank milk. Further, the month of lactation at sampling in sheep flocks emerged a significant factor for increased TBC (>1500 × 103 cfu mL−1) in bulk-tank milk.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 841
Author(s):  
Maria Liapi ◽  
George Botsaris ◽  
Costas Arsenoglou ◽  
Nikolas Markantonis ◽  
Christodoulos Michael ◽  
...  

One hundred and seventy-seven (177) bulk tank milk samples were analyzed with a commercially available real-time polymerase chain reaction kit and 11 (6.21%), 41 (23.16%), and 58 (32.77%) tested positive for Mycoplasma bovis, Staphylococcus aureus, and Streptococcus agalactiae, respectively. Statistical analysis revealed a significant relationship between the presence of S. aureus and S. agalactiae. Enumeration of somatic cells was performed in the same samples by flow cytometry. The somatic cell counts were found higher in S. aureus and S. agalactiae positive samples. No association was found between M. bovis presence and somatic cells counts. Low internal assay control Ct values were found to be related with high somatic cell counts. Noticeably, this is the first report for the presence of M. bovis in Cyprus. Therefore, its presence was confirmed by bulk tank milk culture, conventional PCR, and next generation sequencing. Furthermore, M. bovis was typed with multilocus sequencing typing and was allocated to sequence type 29 (ST 29). Real-time PCR in bulk tank milk samples is a useful tool to detect mammary infections, especially for neglected pathogens such as M. bovis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tania Bobbo ◽  
Stefano Biffani ◽  
Cristian Taccioli ◽  
Mauro Penasa ◽  
Martino Cassandro

AbstractBovine mastitis is one of the most important economic and health issues in dairy farms. Data collection during routine recording procedures and access to large datasets have shed the light on the possibility to use trained machine learning algorithms to predict the udder health status of cows. In this study, we compared eight different machine learning methods (Linear Discriminant Analysis, Generalized Linear Model with logit link function, Naïve Bayes, Classification and Regression Trees, k-Nearest Neighbors, Support Vector Machines, Random Forest and Neural Network) to predict udder health status of cows based on somatic cell counts. Prediction accuracies of all methods were above 75%. According to different metrics, Neural Network, Random Forest and linear methods had the best performance in predicting udder health classes at a given test-day (healthy or mastitic according to somatic cell count below or above a predefined threshold of 200,000 cells/mL) based on the cow’s milk traits recorded at previous test-day. Our findings suggest machine learning algorithms as a promising tool to improve decision making for farmers. Machine learning analysis would improve the surveillance methods and help farmers to identify in advance those cows that would possibly have high somatic cell count in the subsequent test-day.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fidèle Kabera ◽  
Jean-Philippe Roy ◽  
Mohamed Afifi ◽  
Sandra Godden ◽  
Henrik Stryhn ◽  
...  

A systematic review and a series of meta-analyses were conducted to investigate the efficacy of selective dry cow antimicrobial treatment (SDCT) (in which only infected quarters/cows were treated with an antimicrobial) compared with blanket dry cow treatment (BDCT) (all quarters/all cows received an antimicrobial, regardless of their infection status). A full detailed protocol was published before initiating this review. Studies reporting on the (1) proportion of untreated quarters or cows when using SDCT, (2) intramammary infection (IMI) incidence risk over the dry period, (3) IMI elimination risk, (4) post-calving IMI prevalence, (5) early lactation clinical mastitis incidence, or (6) subsequent lactation milk yield and somatic cell counts were considered eligible. Thirteen articles representing 12 controlled trials, whether randomized or not, were available for analyses. SDCT reduced the use of antimicrobials at dry off by 66% (95% CI: 49–80). There was no difference in the elimination of existing IMI at dry off, between SDCT and BDCT. Meta-regression showed that the risk of IMI incidence during the dry period, IMI risk at calving, early lactation clinical mastitis risk, and early lactation milk yield and somatic cell counts did not differ between SDCT and BDCT as long as an internal teat sealant (65% bismuth subnitrate) was administered to untreated healthy quarters/cows at dry off. For trials not using internal teat sealants, SDCT resulted in higher risk than BDCT of acquiring a new IMI during the dry period and of harboring an IMI at calving. Lines of evidence strongly support that SDCT would reduce the use of antimicrobials at dry off, without any detrimental effect on udder health or milk production during the 1st months of the subsequent lactation, if, and only if, internal teat sealants are used for healthy, untreated quarters/cows.


Livestock ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 161-168
Author(s):  
Al Manning ◽  
Natalia Vasileiou ◽  
JP Crilly

Clinical mastitis is much less common in dairy sheep and goats than in cattle, but it is still a major cause of loss and impaired welfare. Subclinical mastitis rates range from 5–30%, but it is a significant cause of lost production and impaired milk quality. Gram-positive bacteria, in particular Staphylococcus aureus and coagulase-negative staphylococci, and contagious modes of transmission predominate. Diagnosis is complicated by higher somatic cell counts (SCC) even in uninfected udders, particular in goats. Control of mastitis requires a multimodal approach involving treatment, culling, vaccination and steps to reduce transmission.


Sign in / Sign up

Export Citation Format

Share Document