field modelling
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 130)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Peter Bollada ◽  
Peter K Jimack ◽  
Andrew M Mullis

We summarise contributions made to the computational phase-field modelling of alloy solidification from the University of Leeds spoke of the LiME project. We begin with a general introduction to phase-field, and then reference the numerical issues that arise from solution of the model, before detailing each contribution to the modelling itself. These latter contributions range from controlling and developing interface-width independent modelling; controlling morphology in both single and multiphase settings; generalising from single to multi-phase models; and creating a thermodynamic consistent framework for modelling entropy flow and thereby postulate a temperature field consistent with the concepts of, and applicable in, multiphase and density-dependent settings.


PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Franz Dammaß ◽  
Marreddy Ambati ◽  
Markus Kästner

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Roghayeh Abbasiverki ◽  
Richard Malm ◽  
Anders Ansell ◽  
Erik Nordström

Concrete buttress dams could potentially be susceptible to high-frequency vibrations, especially in the cross-stream direction, due to their slender design. Previous studies have mainly focused on low-frequency vibrations in stream direction using a simplified foundation model with the massless method, which does not consider topographic amplifications. This paper therefore investigates the nonlinear behaviour of concrete buttress dams subjected to high-frequency excitations, considering cross-stream vibrations. For comparison, the effect of low-frequency excitations is also investigated. The influence of the irregular topography of the foundation surface on the amplification of seismic waves at the foundation surface and thus in the dam is considered by a rigorous method based on the domain-reduction method using the direct finite element method. The sensitivity of the calculated response of the dam to the free-field modelling approach is investigated by comparing the result with analyses using an analytical method based on one-dimensional wave propagation theory and a massless approach. Available deconvolution software is based on the one-dimensional shear wave propagation to transform the earthquake motion from the foundation surface to the corresponding input motion at depth. Here, a new deconvolution method for both shear and pressure wave propagation is developed based on an iterative time-domain procedure using a one-dimensional finite element column. The examples presented showed that topographic amplifications of high-frequency excitations have a significant impact on the response of this type of dam. Cross-stream vibrations reduced the safety of the dam due to the opening of the joints and the increasing stresses. The foundation modelling approach had a significant impact on the calculated response of the dam. The massless method produced unreliable results, especially for high-frequency excitations. The free-field modelling with the analytical method led to unreliable joint openings. It is therefore recommended to use an accurate approach for foundation modelling, especially in cases where nonlinearity is considered.


2021 ◽  
pp. 15-24
Author(s):  
Raja Gopal Tangella ◽  
Pramod Kumbhar ◽  
Ratna Kumar Annabattula

2021 ◽  
pp. 117491
Author(s):  
Jianbao Gao ◽  
Annie Malchère ◽  
Shenglan Yang ◽  
Andrea Campos ◽  
Ting Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document