neuromuscular activation
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 44)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Brooke Davidson ◽  
Avery Hinks ◽  
Brian H. Dalton ◽  
Ryota Akagi ◽  
Geoffrey A. Power

Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.


Author(s):  
Jorge Amestoy ◽  
Daniel Pérez-Prieto ◽  
Raúl Torres-Claramunt ◽  
Juan Francisco Sánchez-Soler ◽  
Albert Solano ◽  
...  

Abstract Purpose The aim of this study was to compare the correlation between preoperative quadriceps femoris muscle thickness and postoperative neuromuscular activation and quadriceps femoris strength in patients with and without patellofemoral pain after arthroscopic partial meniscectomy. Methods A series of 120 patients were prospectively analysed in a longitudinal cohort study of patients scheduled for arthroscopic partial meniscectomy. The patellofemoral pain group included patients who developed anterior knee pain after surgery while the control group included those who had not done so. Patients with preoperative patellofemoral pain, previous knee surgeries as well as those on whom additional surgical procedures had been performed were excluded. Of the 120 initially included in the study, 90 patients were analysed after the exclusions. Results There is a direct correlation between preoperative quadriceps femoris muscle thickness and the neuromuscular activity values and the strength of the muscle at 6 weeks after surgery. These results were seen exclusively in the group of patients who do not develop patellofemoral pain (0.543, p = 0.008). The group of patients who developed anterior knee pain in the postoperative period did not show this correlation (n.s.). Conclusion In patients without patellofemoral pain after meniscectomy, the greater the preoperative thickness of the quadriceps femoris, the more postoperative neuromuscular activation and strength they had. This correlation did not occur in those patients who develop patellofemoral pain after meniscal surgery. Level of evidence II.


2021 ◽  
Vol 11 (11) ◽  
pp. 1170
Author(s):  
Paula Manuela Mendes Moleirinho-Alves ◽  
Pedro Miguel Teixeira Cravas Cebola ◽  
Paulo Duarte Guia dos Santos ◽  
José Pedro Correia ◽  
Catarina Godinho ◽  
...  

Pain in masticatory muscles is one of the most frequent symptoms in patients with temporomandibular disorders (TMD) and can lead to changes in the patterns of neuromuscular activity of masticatory muscles and decrease in bite force. This study assesses the effects of three eight-week exercise programs on pain intensity, neuromuscular activation, and bite force of masticatory muscles in patients with TMD. Forty-five patients were divided into three groups: a therapeutic exercise program (G1), a therapeutic and aerobic exercise program (G2), and an aerobic exercise program (G3). The masticatory muscles’ pain was evaluated using the numeric pain rating scale (NPRS), surface electromyographic (sEMG) activity of the masseter was recorded during maximum voluntary contraction and at rest, and bite force was evaluated using a dynamometer. These parameters were evaluated twice at baseline (A01/A02), at the end of the eight-week intervention period (A1), and 8–12 weeks after the end of the intervention (A2). After intervention, G2 showed the best results, with a significantly decrease in masticatory muscles’ pain and increase in bite force. These results suggest that interventions to reduce pain in patients with TMD should be multimodal.


Sports ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 150
Author(s):  
Yoshiaki Kubo ◽  
Kohei Watanabe ◽  
Koichi Nakazato ◽  
Koji Koyama ◽  
Kenji Hiranuma

We aimed to uncover which rectus femoris strain injury types affect regional activation within the rectus femoris. The rectus femoris has a region-specific functional role; the proximal region of the rectus femoris contributes more than the middle and distal regions during hip flexion. Although a history of strain injury modifies the region-specific functional role within the rectus femoris, it was not obvious which rectus femoris strain injury types affect regional activation within it. We studied 12 soccer players with a history of rectus femoris strain injury. Injury data were obtained from a questionnaire survey and magnetic resonance imaging. To confirm the region-specific functional role of the rectus femoris, surface multichannel electromyographic signals were recorded. Accordingly, eight legs had a history of central tendon injury, four had a history of myofascial junction injury, and four had a healed strain injury. When the injury was limited to the central tendon, the region-specific functional role disappeared. The region-specific functional role was confirmed when the injury was outside the central part. The neuromuscular function was also inhibited when the longitudinal range of the injured region was long. Our findings suggest that a central tendon injury with a long injury length impairs regional neuromuscular activation of the rectus femoris muscle.


Author(s):  
Bruno Bessa Monteiro-Oliveira ◽  
Ana Carolina Coelho-Oliveira ◽  
Laisa Liane Paineiras-Domingos ◽  
Anelise Sonza ◽  
Danúbia da Cunha de Sá-Caputo ◽  
...  

Author(s):  
Sherrilyn Walters ◽  
Ben Hoffman ◽  
William MacAskill ◽  
Michael A. Johnson ◽  
Graham R. Sharpe ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252644
Author(s):  
Hiroshi Akima ◽  
Hisashi Maeda ◽  
Teruhiko Koike ◽  
Koji Ishida

The electromyographic (EMG) activity and force relationship, i.e. EMG-force relationship, is a valuable indicator of the degree of the neuromuscular activation during isometric force production. However, there is minimal information available regarding the EMG-force relationship of individual triceps brachii (TB) muscles at different elbow joint angles. This study aimed to compare the EMG-force relationships of the medial (TB-Med), lateral (TB-Lat), and long heads (TB-Long) of the TB. 7 men and 10 women performed force matching isometric tasks at 20%, 40%, 60%, and 80%maximum voluntary contraction (MVC) at 60°, 90°, and 120° of extension. During the submaximal force matching tasks, the surface EMG signals of the TB-Med, TB-Lat, and TB-Long were recorded and calculated the root mean square (RMS). RMS of each force level were then normalized by RMS at 100%MVC. For the TB-Med, ultrasonography was used to determine the superficial region of the muscle that faced the skin surface to minimize cross-talk. The joint angle was monitored using an electrogoniometer. The elbow extension force, elbow joint angle, and surface EMG signals were simultaneously sampled at 2 kHz and stored on a personal computer. The RMS did not significantly differ between the three muscles, except between the TB-Med and TB-Lat during 20%MVC at 60°. The RMS during force levels of ≥ 60%MVC at 120° was significantly lower than that at 60° or 90° for each muscle. The sum of difference, which represents the difference in RMS from the identical line, did not significantly differ in any of the assessed muscles in the present study. This suggests that a relatively smaller neuromuscular activation could be required when the elbow joint angle was extended. However, neuromuscular activation levels and relative force levels were matched in all three TB synergists when the elbow joint angle was at 90° or a more flexed position.


Sign in / Sign up

Export Citation Format

Share Document