machining operations
Recently Published Documents


TOTAL DOCUMENTS

572
(FIVE YEARS 122)

H-INDEX

31
(FIVE YEARS 7)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Magdalena Cortina ◽  
Jon Iñaki Arrizubieta ◽  
Aitzol Lamikiz ◽  
Eneko Ukar

Purpose This paper aims to analyse the effects derived from the presence of residual coolant from machining operations on the Directed Energy Deposition of AISI H13 tool steel and the quality of the resulting part. Design/methodology/approach In the present paper, the effectiveness of various cleaning techniques, including laser vaporising and air blasting, applied to different water/oil concentrations are studied. For this purpose, single-layer and multi-layer depositions are performed. Besides, the influence of the powder adhered to the coolant residues remaining on the surface of the workpiece is analysed. In all cases, cross-sections are studied in-depth, including metallographic, microhardness, scanning electron microscopy and crack mechanism analyses. Findings The results show that, although no significant differences were found for low oil concentrations when remarkably high oil concentrations were used the deposited material cracked, regardless of the cleaning technique applied. The crack initiation and propagation mechanisms have been analysed, concluding that the presence of oil leads to hydrogen induced cracking. Originality/value High oil concentration residues from previous machining operations in hybrid manufacturing led to hydrogen induced cracking when working with AISI H13 tool steel. The results obtained will help in defining future hybrid manufacturing processes that combine additive and subtractive operations.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 322
Author(s):  
Gianni Campatelli ◽  
Giuseppe Venturini ◽  
Niccolò Grossi ◽  
Francesco Baffa ◽  
Antonio Scippa ◽  
...  

Repairing, remanufacturing, and refurbishing high value metal components are crucial to move towards a more sustainable economy. Nowadays, repairing operations on high value parts, such as dies, are generally performed using time-consuming manual approaches that rely on the operator’s expertise. The research idea of this paper is to develop a retrofit kit to provide additive capabilities to an existing milling machine, allowing automatic repairing of components thanks to a fast switch between additive and machining operations without a relevant economic investment such the acquisition of a brand-new machine: the final cost of the solution is lower than 10% with respect to the mean cost of a 5-axis milling machine. The additive technology used in this work is Wire Arc Additive Manufacturing (WAAM) that is characterized by a higher deposition rate and a simpler and cost-effective equipment with respect to other techniques (e.g., laser cladding). The design of the system is illustrated in the paper together with the analysis of the results achieved repairing a test case: a die casting mold made of AISI H13 tool steel.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3995
Author(s):  
Arunachalam S. S. Balan ◽  
Chidambaram Kannan ◽  
Kunj Jain ◽  
Sohini Chakraborty ◽  
Siddharth Joshi ◽  
...  

Carbon-Fibre-Reinforced Polymers (CFRPs) have seen a steady rise in modern industrial applications due to their high strength-to-weight ratio and corrosion resistance. However, their potential is being hindered by delamination which is induced on them during machining operations. This has led to the adoption of new and innovative techniques like cryogenic-assisted machining which could potentially help reduce delamination. This study is aimed at investigating the effect of cryogenic conditions on achieving better hole quality with reduced delamination. In this paper, the numerical analysis of the drilling of CFRP composites is presented. Drilling tests were performed experimentally for validation purposes. The effects of cooling conditions and their subsequent effect on the thrust force and delamination were evaluated using ABAQUS/CAE. The numerical models and experimental results both demonstrated a significant reduction in the delamination factor in CFRP under cryogenic drilling conditions.


2021 ◽  
Vol 2021 (10) ◽  
pp. 13-21
Author(s):  
Vladimir Davydov ◽  
Aleksandr Nikitenko ◽  
Mihail Gimadeev ◽  
Vera Berkun

The purpose of the paper. In order to solve the problems of increasing the efficiency of machining operations of small diameter holes by milling, the optimal range of cutting modes and helix pitch for the machining strategy with helical interpolation is established. The reduction of labor intensity and costs of hole machining when treating holes in alloyed corrosion-resistant steels is experimentally confirmed. Research methods. In this paper, the issues of machining blind holes by helical interpolation milling with end cylindrical carbide cutters of relatively small dimensions in parts made of 12X18N10T alloy are considered. The features of this machining are availability of significant axial and radial components of the cutting forces with relatively low tool strength. This leads to the fact that a key factor of the tool failure is its mechanical failure, the cause of which is an increase in cutting forces due to the edge of the cutter being chipped. Research results and novelty. It has been experimentally proved that the most rational machining parameters to ensure the specified accuracy and surface quality of the machined holes when using a strategy of helical interpolation milling will be the choice of the helix pitch p = 0.2 mm, the feed range F = 0.075-0.11 mm /tooth, which corresponds to the minute feeds of the milling center 450-675 mm/min. Conclusions. The optimal range of cutting modes is found in the feed range from 450 to 675 mm/min, with a helical interpolation pitch of 0.2 mm. The accuracy and roughness of the holes obtained by milling with end mills with a diameter of 3 mm for steel 12X18N10T is evaluated.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4830-4835
Author(s):  
CHRISTIAN BRECHER ◽  
◽  
RALPH KLIMASCHKA ◽  
ALEXANDER STEINERT ◽  
STEPHAN NEUS ◽  
...  

Process instabilities due to regenerative chatter pose significant limitations on the achievable material removal rates and thus on the profitability of machining operations. Stability lobe diagrams serve to exploit the maximum yet stable cutting depth and can be determined either analytically or experimentally. While analytical approaches suffer from inaccuracies because of the assumptions made for the specific models, experimental stability lobe diagrams require extensive cutting tests. Therefore, this paper introduces a new automated experimental method for determining stability lobe diagrams in milling with reduced effort regarding time. A closed-loop system is designed, containing a sensor-based online chatter detection along with a strategy to set parameters for subsequent cuts based on the stability boundaries known at each iteration. Both cuts with continuously increasing cutting depth and varied spindle speed are deployed to ensure fast detection of stability limits. The method is tested for a slot milling use case and the results are compared to a conventionally obtained stability lobe diagram yielding a significantly reduction in required time (-90 %) and resources (-67 %) whilst maintaining good accuracy. The reduced effort qualifies the proposed method as a tool to rapidly deliver maximum productive yet stable cutting parameters for optimization of existing or enhanced planning of new manufacturing processes.


2021 ◽  
pp. 525-534
Author(s):  
A. Dementyev ◽  
P. Kolar ◽  
M. Benesch ◽  
U. Teicher ◽  
R. Pätzold ◽  
...  

2021 ◽  
pp. 002199832110316
Author(s):  
Shinya Matsuda ◽  
Kohei Mabe ◽  
Keiji Ogi ◽  
Shigeki Yashiro ◽  
Yoshifumi Kakudo

In industrial processes, piercing and trimming are essential because composite structures are usually manufactured in a near-net shape to reduce machining operations. Punching and shear cutting using out-of-plane shear loading are expected to increase productivity. Nevertheless, little is known about the effects of such operations on polymer-matrix composites. This study presents on the characterization of piercing damage in typical carbon fiber reinforced plastic (CFRP) cross-ply laminates [0°2/90°2]s after punching using quasi-static (QS) and drop-weight impact (DWI) loadings. During QS punching, the upper and lower ply interfaces delaminate due to the high shear stress to cut fibers and gradual shear deformation in the middle ply; however, during DWI punching at a low impact velocity, delamination of the lower ply interface can be reduced due to the localization of shear deformation, as compared to that in QS punching. Finally, the damage accumulation process during DWI punching is discussed.


2021 ◽  
Vol 11 (16) ◽  
pp. 7559
Author(s):  
Elena Bassoli ◽  
Silvio Defanti ◽  
Emanuele Tognoli ◽  
Nicolò Vincenzi ◽  
Lorenzo Degli Esposti

High cost, unpredictable defects and out-of-tolerance rejections in final parts are preventing the complete deployment of Laser-based Powder Bed Fusion (LPBF) on an industrial scale. Repeatability, speed and right-first-time manufacturing require synergistic design approaches. In addition, post-build finishing operations of LPBF parts are the object of increasing attention to avoid the risk of bottlenecks in the machining step. An aluminum component for automotive application was redesigned through topology optimization and Design for Additive Manufacturing. Simulation of the build process allowed to choose the orientation and the support location for potential lowest deformation and residual stresses. Design for Finishing was adopted in order to facilitate the machining operations after additive construction. The optical dimensional check proved a good correspondence with the tolerances predicted by process simulation and confirmed part acceptability. A cost and time comparison versus CNC alone attested to the convenience of LPBF unless single parts had to be produced.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4761
Author(s):  
Ardamanbir Singh Sidhu ◽  
Sehijpal Singh ◽  
Raman Kumar ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin

Increasing the energy efficiency of machining operations can contribute to more sustainable manufacturing. Therefore, there is a necessity to investigate, evaluate, and optimize the energy consumed during machining operations. The research highlights a method employed to prioritize the most energy-intensive machining operation and highlights the significance of electric parameters as predictors in power estimation of machining operations. Multi regression modeling with standardized regression weights was used to identify significant power quality predictors for active power evaluation for machining operations. The absolute error and the relative error both decreased when the active power was measured by the power analyzer for each of the identified machining operations, compared to the standard power equation and that obtained from the modeled regression equations. Furthermore, to determine energy-intensive machining operation, a hybrid decision-making technique based on TOPSIS (a technique for order preference by similarity to ideal solution) and DoM (degree of membership) was utilized. Allocation of weights to energy responses was carried out using three methods, i.e., equal importance, entropy weights, and the AHP (analytical hierarchy process). Results revealed that a drilling process carried out on material ST 52.3 is energy-intensive. This accentuates the significance of electric parameters in the assessment of active power during machining operations.


Sign in / Sign up

Export Citation Format

Share Document