specific ion interaction theory
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1312
Author(s):  
Antonio Gigliuto ◽  
Rosalia Maria Cigala ◽  
Anna Irto ◽  
Maria Rosa Felice ◽  
Alberto Pettignano ◽  
...  

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity); M = Sn2+, L = Dop−). For CH3Hg+, the speciation model reported the ternary MLCl (M = CH3Hg+) complex. The dependence on the ionic strength of complex formation constants was modeled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of enthalpy change values of the formation and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The sequestering ability of dopamine towards the investigated cations was evaluated using the calculation of pL0.5 parameter. The sequestering ability trend resulted to be: Sn2+ > CH3Hg+ > Ca2+ > Mg2+. For example, at I = 0.15 mol dm−3, T = 298.15 K and pH = 7.4, pL0.5 = 3.46, 2.63, 1.15, and 2.27 for Sn2+, CH3Hg+, Ca2+ and Mg2+ (pH = 9.5 for Mg2+), respectively. For the Ca2+/Dop- system, the precipitates collected at the end of the potentiometric titrations were analyzed by thermogravimetry (TGA). The thermogravimetric calculations highlighted the formation of solid with stoichiometry dependent on the different metal:ligand ratios and concentrations of the starting solutions.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 511 ◽  
Author(s):  
Francesco Crea ◽  
Concetta De Stefano ◽  
Anna Irto ◽  
Gabriele Lando ◽  
Stefano Materazzi ◽  
...  

The interactions of epinephrine ((R)-(−)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph−) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: ΔHHL = −39 ± 1 kJ mol−1, ΔHH2L = −67 ± 1 kJ mol−1 (overall reaction), ΔHML = −26 ± 4 kJ mol−1, and ΔHM2L2(OH)2 = 39 ± 2 kJ mol−1. The results were that UO22+ complexation by Eph− was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye–Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm−3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4084 ◽  
Author(s):  
Anna Irto ◽  
Paola Cardiano ◽  
Salvatore Cataldo ◽  
Karam Chand ◽  
Rosalia Maria Cigala ◽  
...  

The acid–base properties of two bifunctional 3-hydroxy-4-pyridinone ligands and their chelating capacity towards Zn2+, an essential bio-metal cation, were investigated in NaCl aqueous solutions by potentiometric, UV-Vis spectrophotometric, and 1H NMR spectroscopic titrations, carried out at 0.15 ≤ I/mol −1 ≤ 1.00 and 288.15 ≤ T/K ≤ 310.15. A study at I = 0.15 mol L−1 and T = 298.15 K was also performed for other three Zn2+/Lz− systems, with ligands belonging to the same family of compounds. The processing of experimental data allowed the determination of protonation and stability constants, which showed accordance with the data obtained from the different analytical techniques used, and with those reported in the literature for the same class of compounds. ESI-MS spectrometric measurements provided support for the formation of the different Zn2+/ligand species, while computational molecular simulations allowed information to be gained on the metal–ligand coordination. The dependence on ionic strength and the temperature of equilibrium constants were investigated by means of the extended Debye–Hückel model, the classical specific ion interaction theory, and the van’t Hoff equations, respectively.


2015 ◽  
Vol 103 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Benoit Brunel ◽  
Violaine Philippini ◽  
Mickaël Mendes ◽  
Jean Aupiais

Abstract Complexation of various actinides (U(VI), Np(V), Pu(V), Am(III)) by oxalato ligand was studied by capillary electrophoresis (ICPMS detection) in 0.1 mol L–1 NaClO4 ionic strength solutions at various temperatures (15, 25, 35, 45 and 55 ℃). For each solution a unique peak was observed as a result of a fast equilibrium between the free ions and the complexes (labile systems). The results confirmed the formation of the 1:1, 1:2 and 1:3 complexes for U(VI) and Am(III); the formation of the 1:1 and 1:2 complexes for Np(V) and the formation of only 1 complex for Pu(V). For each complex, the thermodynamic parameters (the Gibbs energy ΔrG(T), the molar entropy change ΔrS(T) and the molar enthalpy change ΔrH(T0)) were fitted to the experimental data. The effect of the ionic medium was treated using the specific ion interaction theory and the thermodynamic parameters at zero ionic strength were compared to previously published data.


2013 ◽  
Vol 85 (12) ◽  
pp. 2249-2311 ◽  
Author(s):  
Kipton J. Powell ◽  
Paul L. Brown ◽  
Robert H. Byrne ◽  
Tamás Gajda ◽  
Glenn Hefter ◽  
...  

The numerical modeling of ZnII speciation amongst the environmental inorganic ligands Cl–, OH–, CO32–, SO42–, and PO43– requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol·kg–1 and 25 °C (298.15 K), and reports the empirical reaction ion interaction coefficients, ∆ε, required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted–Guggenheim–Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ∆rH, are reported where available. There is scope for additional high-quality measurements for the Zn2+ + H+ + CO32– system and for the Zn2+ + OH– and Zn2+ + SO42– systems at I > 0. In acidic and weakly alkaline fresh water systems (pH < 8), in the absence of organic ligands (e.g., humic substances), ZnII speciation is dominated by Zn2+(aq). In this respect, ZnII contrasts with CuII and PbII (the subjects of earlier reviews in this series) for which carbonato- and hydroxido- complex formation become important at pH > 7. The speciation of ZnII is dominated by ZnCO3(aq) only at pH > 8.4. In seawater systems, the speciation at pH = 8.2 is dominated by Zn2+(aq) with ZnCl+, Zn(Cl)2(aq), ZnCO3(aq), and ZnSO4(aq) as minor species. This behaviour contrasts with that for CuII and PbII for which at the pH of seawater in equilibrium with the atmosphere at 25 °C (log10 {[H+]/c°} ≈ 8.2) the MCO3(aq) complex dominates over the MCln(2–n)+ species. The lower stability of the different complexes of ZnII compared with those of CuII, PbII, and CdII is also illustrated by the percentage of uncomplexed M2+ in seawater, which is ca. 55, 3, 2, and 3.3 % of [MII]T, respectively.


2009 ◽  
Vol 81 (9) ◽  
pp. 1585-1590 ◽  
Author(s):  
Leslie Pettit ◽  
Gwyneth Pettit

The IUPAC Stability Constants Database (SC-Database), designed to contain all significant published constants, provides the most complete and accessible route to stability constants in the literature. Collection of new constants is becoming less significant since most are now measured to confirm a mechanism or to identify bonding centers, not to provide data for general use. As a result, constants are often measured less rigorously and are of lower accuracy. What are required now are critical evaluations of existing data, coupled with accurate study of a number of important and superficially simpler systems (e.g., complexes with some inorganic ligands). Calculation of species distribution curves is a major use of stability constants. Ways of reflecting possible errors in the calculated curves are now required. Historically, curves have been drawn as sharp lines, but these could only result from using the exact stability constants with an accurate model for the system. Two techniques for demonstrating the effect of errors are outlined. Constants are dependent on ionic strength and temperature changes. Specific ion interaction theory (SIT) is the most general method of compensating for ionic strength changes up to about 5 molal. Software to correct constants for ionic strength changes, prepared under recent IUPAC projects, is described.


Sign in / Sign up

Export Citation Format

Share Document