photo oxidation
Recently Published Documents





2022 ◽  
Vol 10 (1) ◽  
Anna Micheluz ◽  
Eva Mariasole Angelin ◽  
Julia Sawitzki ◽  
Marisa Pamplona

AbstractUnderstanding the degradation of plastic materials is a big challenge for curators, conservators and conservation scientists in museums worldwide aiming to preserve their collections due to the variety of formulations of synthetic polymers and pigments. The conservation of polyurethane (PUR) based objects is challenging because they can suffer from extensive degradation. Particularly PUR elastomers can degrade shortly after their production, as occurred to the mask of the Japanese robot SAYA, which within 8 years suffered from two large tears, discoloration and stickiness. This research aims at studying the degradation phenomena of the androids’ synthetic skin. Better knowledge of the chemical composition of the mask and the chemical and physical decay will contribute to planning a suitable stabilization treatment. Within a multi-analytical approach, colorimetric and microscopic investigations highlighted discolored areas, which showed further color changes within a five months monitoring campaign, confirming the instability of the material likely due to ongoing degradation. Raman microscopy allowed the identification of Pigment White 6 (titanium dioxide TiO2) in the anatase form, known to promote the photosensitivity of PUR substrates towards ultraviolet (UV) light. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy identified the PUR composition of the mask, the presence of phthalates as plasticizers and suggested the formation of quinone chromophores in the polymer structure as a result of photo-oxidation, possibly responsible for the mask yellowing. Evolved gas analysis-mass spectrometry (EGA-MS) and double-shot-gas chromatography/mass spectrometry (TD/Py–GC/MS) analyses support the characterization of the formulation of the mask as being made of methylene diphenyl diisocyanate (MDI) PUR ether elastomer. Plasticizers in high concentration, mainly diisononyl phthalate (DINP) and bis(2-ethylhexyl)phthalate (DEHP), and the UV stabilizer Tinuvin 328 were also detected. In addition, the presence of styrene-acrylonitrile (SAN) could also contribute to the mask’s chemical instability. More amount of UV stabilizer and phthalates were detected at the surface (contributing to its stickiness) than in the inner core. The degradation of the mask results from the light susceptibility of MDI PUR ether and SAN, as well as the higher photochemical activity of anatase. The mask was transferred on to a mannequin and placed in the storage area to prevent light exposure and photo-oxidation. As loose edges had to be stabilized, tests were conducted and adhesive stripes glued with a PUR dispersion were selected for keeping the head’s shape. The novelty of this study is the implementation of conservation science on the study of androids with PUR elastomeric components in robotic collections, which are becoming increasingly popular in technical museums, however still seldomly studied.

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 72
Elena Hipper ◽  
Michaela Blech ◽  
Dariush Hinderberger ◽  
Patrick Garidel ◽  
Wolfgang Kaiser

UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Adam Kubiak ◽  
Anna Grzegórska ◽  
Joanna Zembrzuska ◽  
Anna Zielińska-Jurek ◽  
Katarzyna Siwińska-Ciesielczyk ◽  

The TiO2-Eu and TiO2-La systems were successfully synthesized using the microwave method. Based on the results of X-ray diffraction analysis, it was found that regardless of the analyzed systems, two crystal structures were noted for the obtained samples: anatase and rutile. The analysis, such as XPS and EDS, proved that the doped lanthanum and europium nano-particles are present only on the TiO2 surface without disturbing the crystal lattice. In the synthesized systems, there were no significant changes in the bandgap energy. Moreover, all the obtained systems were characterized by high thermal stability. One of the key objectives of the work, and a scientific novelty, was the introduction of UV-LED lamps into the metronidazole photo-oxidation pathway. The results of the photo-oxidation study showed that the obtained TiO2 systems doped with selected lanthanides (Eu or La) show high efficiency in the removal of metronidazole, and at the same consuming nearly 10 times less electricity compared to conventional UV lamps (high-pressure mercury lamp). Liquid-chromatography mass-spectrometry (LC-MS) analysis of an intermediate solution showed the presence of fragments of the degraded molecule by m/z 114, 83, and 60, prompting the formulation of a plausible photodegradation pathway for metronidazole.

2021 ◽  

<p>In this paper, photo-Fenton method has been systematically examined to oxidize the toxic and mobile As(III) in the solution by •OH radicals resulted from the reactions between Fe2+ and H2O2 under UV light, to form the less toxic and insoluble As(V). The effects of various experimental parameters including initial Fe2+ and H2O2 concentrations, working pH, and contact time were studied through a batch experiment. The concentration of As(V) resulted from the photo-oxidation was determined by visible spectrophotometry method based on the formation of arsenate molybdate solution. The results of the research attributed noticeably that the As(III) could be oxidized through photo-Fenton process to form As(V) that was assigned by a considerable decline in the concentration. The maximal oxidation of As(III) with 10 mg L-1 of the concentration in 50 mL of the aqueous solution, that was about 85%, can be reached in the presence of Fe2+ 10-2 mole L-1, H2O2 5. 10-2 mole L-1 at the working pH 3 and within 3 h of the reaction time. It has been also detected that for reaching the permissible level (lower than 0.01 mg L-1 ), three stages of the photo-Fenton process were required.</p>

Sufeng Quan ◽  
Yingying Wang ◽  
Jie Jiang ◽  
Shiyou Fu ◽  
Zhonglin Li ◽  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3843
Víctor Bonal ◽  
José A. Quintana ◽  
José M. Villalvilla ◽  
Pedro G. Boj ◽  
Rafael Muñoz-Mármol ◽  

The molecule N,N′-bis(3-methylphenyl)-N,N′-dyphenylbenzidine (TPD) has been widely used in optoelectronic applications, mainly for its hole-transporting properties, but also for its capability to emit blue light and amplified spontaneous emission, which is important for the development of organic lasers. Here, we report deep-blue-emitting distributed feedback (DFB) lasers based on TPD dispersed in polystyrene (PS), as active media, and dichromated gelatin layers with holographically engraved relief gratings, as laser resonators. The effect of the device architecture (with the resonator located below or on top of the active layer) is investigated with a dye (TPD) that can be doped into PS at higher rates (up to 60 wt%), than with previously used dyes (<5 wt%). This has enabled changing the index contrast between film and resonator, which has an important effect on the laser performance. With regards to thresholds, both architectures behave similarly for TPD concentrations above 20 wt%, while for lower concentrations, top-layer resonator devices show lower values (around half). Remarkably, the operational durability of top-layer resonator devices is larger (in a factor of around 2), independently of the TPD concentration. This is a consequence of the protection offered by the resonator against dye photo-oxidation when the device is illuminated with pulsed UV light.

2021 ◽  
Adeline M Fanni ◽  
Daniel Okoye ◽  
Florencia A Monge ◽  
Julia Hammond ◽  
Fahimeh Maghsoodi ◽  

Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylene-based compounds (OPEs) exhibit selective binding and fluorescence turn-on in the presence of pre-fibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-beta (Ab) and alpha-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of toxic Ab; aggregates and compared its efficacy to the well-known but non-selective photosensitizer methylene blue (MB). Our results show that while MB photo-oxidized both monomeric and fibrillar conformers of Ab40, OPE oxidized only Ab40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed, but retained the characteristic beta-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of currently available photosensitizers, and represents a significant advancement of PDT as a viable strategy to treat neurodegenerative disorders.

Sign in / Sign up

Export Citation Format

Share Document