transcription antitermination
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 8)

H-INDEX

35
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Skyler L. Kelly ◽  
Courtney E. Szyjka ◽  
Eric J. Strobel

Synchronized transcription elongation complexes (TECs) are a fundamental tool for in vitro studies of transcription and RNA folding. Transcription elongation can be synchronized by omitting one or more NTPs from an in vitro transcription reaction so that RNA polymerase can only transcribe to the first occurrence of the omitted nucleotide(s) in the coding DNA strand. This approach was developed over four decades ago and has been applied extensively in biochemical investigations of RNA polymerase enzymes, but has not been optimized for RNA-centric assays. In this work, we describe the development of a system for isolating synchronized TECs from an in vitro transcription reaction. Our approach uses a custom 5′ leader sequence, called C3-SC1, to reversibly capture synchronized TECs on magnetic beads. We first show that complexes isolated by this procedure, called C3-SC1TECs, are >95% pure, >98% active, highly synchronous (94% of complexes chase in <15s upon addition of saturating NTPs), and compatible with solid-phase transcription; the yield of this purification is ~8%. We then show that C3-SC1TECs perturb, but do not interfere with, the function of ZTP-sensing and ppGpp-sensing transcriptional riboswitches. For both riboswitches, transcription using C3-SC1TECs improved the efficiency of transcription termination in the absence of ligand but did not inhibit ligand-induced transcription antitermination. Given these properties, C3-SC1TECs will likely be useful for developing biochemical and biophysical RNA assays that require high-performance, quantitative bacterial in vitro transcription.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia B. Lodato

AbstractEnterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.


2020 ◽  
Vol 74 (1) ◽  
pp. 1-19
Author(s):  
Jeffrey Roberts

Two strains of good fortune in my career were to stumble upon the Watson–Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Linlin You ◽  
Jing Shi ◽  
Liqiang Shen ◽  
Lingting Li ◽  
Chengli Fang ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Shi ◽  
Xiang Gao ◽  
Tongguan Tian ◽  
Zhaoyang Yu ◽  
Bo Gao ◽  
...  

2019 ◽  
Author(s):  
Alba Herrero del Valle ◽  
Britta Seip ◽  
Iñaki Cervera-Marzal ◽  
Guénaël Sacheau ◽  
A. Carolin Seefeldt ◽  
...  

ABSTRACTPolyamines are essential metabolites that play an important role in cell growth, stress adaptation, and microbial virulence1–3. In order to survive and multiply within a human host, pathogenic bacteria adjust the expression and activity of polyamine biosynthetic enzymes in response to different environmental stresses and metabolic cues2. Here, we show that ornithine capture by the ribosome and the nascent peptide SpeFL controls polyamine synthesis in γ-proteobacteria by inducing the expression of the ornithine decarboxylase SpeF4, via a mechanism involving ribosome stalling and transcription antitermination. In addition, we present the cryo-EM structure of an Escherichia coli (E. coli) ribosome stalled during translation of speFL in the presence of ornithine. The structure shows how the ribosome and the SpeFL sensor domain form a highly selective binding pocket that accommodates a single ornithine molecule but excludes near-cognate ligands. Ornithine pre-associates with the ribosome and is then held in place by the sensor domain, leading to the compaction of the SpeFL effector domain and blocking the action of release factor RF1. Thus, our study not only reveals basic strategies by which nascent peptides assist the ribosome in detecting a specific metabolite, but also provides a framework for assessing how ornithine promotes virulence in several human pathogens.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Rodney A. King ◽  
Meghan T. Perez

Bacteriophage O276 is a laboratory-generated hybrid that carries the immunity region of bacteriophage HK022 and all remaining genes from phage λ. Its construction was instrumental in the discovery of RNA-mediated antitermination, an intriguing alternative to the protein-mediated mechanism of transcription antitermination found in most lambdoid phages.


Sign in / Sign up

Export Citation Format

Share Document