gliding bacterium
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 9)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 18 ◽  
pp. 110-119
Author(s):  
Yasuhiro Igarashi ◽  
Yiwei Ge ◽  
Tao Zhou ◽  
Amit Raj Sharma ◽  
Enjuro Harunari ◽  
...  

HPLC/DAD-based chemical investigation of a coral-associated gliding bacterium of the genus Tenacibaculum yielded three desferrioxamine-class siderophores, designated tenacibactins K (1), L (2), and M (3). Their chemical structures, comprising repeated cadaverine–succinic acid motifs terminated by a hydroxamic acid functionality, were elucidated by NMR and negative MS/MS experiments. Compounds 1–3 were inactive against bacteria and a yeast but displayed cytotoxicity against 3Y1 rat embryonic fibroblasts and P388 murine leukemia cells at GI50 in submicromolar to micromolar ranges. Their iron-chelating activity was comparable to deferoxamine mesylate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Li ◽  
Amanda Hurley ◽  
Wei Hu ◽  
Jay W. Warrick ◽  
Gabriel L. Lozano ◽  
...  

AbstractBacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


Author(s):  
Yan Xu ◽  
Jin Li ◽  
Yu Hu ◽  
Haibin Li ◽  
Tao Peng ◽  
...  

A Gram-negative, aerobic, rod-shaped, non-flagellated and motile by gliding bacterium HL2-2T, was isolated from the surface of the brown alga Endarachne binghamiae in China. The 16S rRNA gene sequence analysis showed that this strain was affiliated with the genus Winogradskyella in the family Flavobacteriaceae and presented great similarity with the type strain Winogradskyella litoriviva KMM 6491T (97.9 % sequence similarity). The whole genome of strain HL2-2T comprised 3.6 Mbp with a G+C content of 31.9 mol%. The average nucleotide identity between strain HL2-2T and Winogradskyella litoriviva KMM 6491T was 83.7 %. Growth of the isolated strain was observed from 20–40 °C (optimum, 30 °C), at pH ranged from 5.5 to 8.0 (optimum, pH 6.0) and in the presence of 0–5 % (w/v) NaCl (optimum, 0–2 %). The major fatty acids (>10 % of the total) were C16 : 0, iso-C15 : 0 and the predominant menaquinone was MK-6. The combined phylogenetic, physiological and chemotaxonomic analysis show that the strain HL2-2T represents a novel species belonging to the genus Winogradskyella , for which the name Winogradskyella endarachnes sp. nov. is proposed, and which the type strain is HL2-2T (=CICC 24857T=KCTC 72882T).


2020 ◽  
Vol 14 (11) ◽  
pp. 2890-2900
Author(s):  
Raditijo Hamidjaja ◽  
Jérémie Capoulade ◽  
Laura Catón ◽  
Colin J. Ingham

Abstract Flavobacterium IR1 is a gliding bacterium with a high degree of colonial organization as a 2D photonic crystal, resulting in vivid structural coloration when illuminated. Enterobacter cloacae B12, an unrelated bacterium, was isolated from the brown macroalga Fucus vesiculosus from the same location as IR1. IR1 was found to be a predator of B12. A process of surrounding, infiltration, undercutting and killing of B12 supported improved growth of IR1. A combination of motility and capillarity facilitated the engulfment of B12 colonies by IR1. Predation was independent of illumination. Mutants of IR1 that formed photonic crystals less effectively than the wild type were reduced in predation. Conversely, formation of a photonic crystal was not advantageous in resisting predation by Rhodococcus spp. PIR4. These observations suggest that the organization required to create structural colour has a biological function (facilitating predation) but one that is not directly related to the photonic properties of the colony. This work is the first experimental evidence supporting a role for this widespread type of cell organization in the Flavobacteriia.


2020 ◽  
Vol 48 (2) ◽  
pp. 347-356
Author(s):  
Emilia M.F. Mauriello

Chemosensory systems are signaling pathways elegantly organized in hexagonal arrays that confer unique functional features to these systems such as signal amplification. Chemosensory arrays adopt different subcellular localizations from one bacterial species to another, yet keeping their supramolecular organization unmodified. In the gliding bacterium Myxococcus xanthus, a cytoplasmic chemosensory system, Frz, forms multiple clusters on the nucleoid through the direct binding of the FrzCD receptor to DNA. A small CheW-like protein, FrzB, might be responsible for the formation of multiple (instead of just one) Frz arrays. In this review, we summarize what is known on Frz array formation on the bacterial chromosome and discuss hypotheses on how FrzB might contribute to the nucleation of multiple clusters. Finally, we will propose some possible biological explanations for this type of localization pattern.


2020 ◽  
Vol 6 (10) ◽  
pp. eaay6616 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

The gliding bacterium Flavobacterium johnsoniae is known to have an adhesin, SprB, that moves along the cell surface on a spiral track. Following viscous shear, cells can be tethered by the addition of an anti-SprB antibody, causing spinning at 3 Hz. Labeling the type 9 secretion system (T9SS) with a YFP fusion of GldL showed a yellow fluorescent spot near the rotation axis, indicating that the motor driving the motion is associated with the T9SS. The distance between the rotation axis and the track (90 nm) was determined after adding a Cy3 label for SprB. A rotary motor spinning a pinion of radius 90 nm at 3 Hz would cause a spot on its periphery to move at 1.5 μm/s, the gliding speed. We suggest the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when this adhesin adheres to the solid substratum.


2020 ◽  
Vol 22 (3) ◽  
pp. 939-943
Author(s):  
Zong-Jie Wang ◽  
Haibo Zhou ◽  
Guannan Zhong ◽  
Liujie Huo ◽  
Ya-Jie Tang ◽  
...  

2019 ◽  
Vol 57 (12) ◽  
pp. 1065-1072 ◽  
Author(s):  
Sanjit Chandra Debnath ◽  
Ahmed Mohammed Abdo Miyah ◽  
Can Chen ◽  
Huan Sheng ◽  
Xue-Wei Xu ◽  
...  

2018 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

AbstractThe mechanism for bacterial gliding is not understood. The gliding bacteriumFlavobacterium johnsoniaeis known to have an adhesin, SprB, that moves along the cell surface on a spiral track. When cells are sheared by passage of a suspension through thin tubing, they stop gliding but can be tethered by addition of an anti-SprB antibody. Tethered cells spin about 3 Hz. We labeled the Type 9 secretion system (T9SS) with a yellow-fluorescent-protein (YFP) fusion of GldL. When labeled cells were tethered, a yellow fluorescent spot was found near the rotation axis, which shows that the motor that drives the rotation localizes with the T9SS. The spiral track was labeled by following the motion of Cy3 attached to SprB via an antibody. The distance between the rotation axis and the track was determined by a measurement involving both labels, YFP and Cy3, yielding 90 nm. If a rotary motor spins a pinion of radius 90 nm 3 Hz, a spot on its periphery will move 1.5 μm/s, the speed at which cells glide. We suggest that the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when such an adhesin adheres to the solid substratum.


Sign in / Sign up

Export Citation Format

Share Document