resonant sensors
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 47)

H-INDEX

17
(FIVE YEARS 3)

Mechatronics ◽  
2022 ◽  
Vol 82 ◽  
pp. 102703
Author(s):  
Davinson Castano-Cano ◽  
Mathieu Grossard ◽  
Arnaud Hubert

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Naoki Inomata ◽  
Yuka Tonsho ◽  
Takahito Ono

AbstractThe quality factor (Q-factor) is an important parameter for mechanical resonant sensors, and the optimal values depend on its application. Therefore, Q-factor control is essential for microelectromechanical systems (MEMS). Conventional methods have some restrictions, such as additional and complicated equipment or nanoscale dimensions; thus, structural methods are one of the reasonable solutions for simplifying the system. In this study, we demonstrate Q-factor control using a variable phononic bandgap by changing the length of the periodic microstructure. For this, silicon microstructure is used because it has both periodicity and a spring structure. The bandgap change is experimentally confirmed by measuring the Q-factors of mechanical resonators with different resonant frequencies. The bandgap range varies depending on the extended structure length, followed by a change in the Q-factor value. In addition, the effects of the periodic structure on the Q-factor enhancement and the influence of stress on the structural length were evaluated. Although microstructures can improve the Q-factors irrespective of periodicity; the result of the periodic microstructure is found to be efficient. The proposed method is feasible as the novel Q-factor control technique has good compatibility with conventional MEMS.


2021 ◽  
pp. 113227
Author(s):  
Yee Jher Chan ◽  
Adam R. Carr ◽  
Subhanwit Roy ◽  
Caden M. Washburn ◽  
Nathan Neihart ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7018
Author(s):  
Carlos G. Juan ◽  
Benjamin Potelon ◽  
Cédric Quendo ◽  
Enrique Bronchalo

The measurement of glucose concentration finds interesting potential applications in both industry and biomedical contexts. Among the proposed solutions, the use of microwave planar resonant sensors has led to remarkable scientific activity during the last years. These sensors rely on the changes in the dielectric properties of the medium due to variations in the glucose concentration. These devices show electrical responses dependent on the surrounding dielectric properties, and therefore the changes in their response can be related to variations in the glucose content. This work shows an up-to-date review of this sensing approach after more than one decade of research and development. The attempts involved are sorted by the sensing parameter, and the computation of a common relative sensitivity to glucose is proposed as general comparison tool. The manuscript also discusses the key points of each sensor category and the possible future lines and challenges of the sensing approach.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ralf Lucklum ◽  
Nikolay Mukhin ◽  
Bahram Djafari Rouhani ◽  
Yan Pennec

Resonant mechanical sensors are often considered as mass balance, which responds to an analyte adsorbed on or absorbed in a thin sensitive (and selective) layer deposited on the surface of the resonant device. In a more general sense, the sensor measures properties at the interface of the mechanical resonator to the medium under inspection. A phononic crystal (PnC) sensor employs mechanical resonance as well; however, the working principle is fundamentally different. The liquid medium under inspection becomes an integral part of the PnC sensor. The liquid-filled compartment acts as a mechanical resonator. Therefore, the sensor probes the entire liquid volume within this compartment. In both sensor concepts, the primary sensor value is a resonant frequency. To become an attractive new sensing concept, specifically as a bio and chemical sensor, the PnC sensor must reach an extraordinary sensitivity. We pay attention to the liquid viscosity, which is an important factor limiting sensitivity. The main part of our analysis has been performed on 1D PnC sensors, since they underlie the same material-related acoustic dissipation mechanisms as 2D and 3D PnC sensors. We show that an optimal relation of frequency shift to bandwidth and amplitude of resonance is the key to an enhanced sensitivity of the sensor-to-liquid analyte properties. We finally address additional challenges of 2D and 3D PnC sensor design concept. We conclude that the sensor should seek for a frequency resolution close to 10−6 the probing frequency, or a resolution with speed of sound approaching 1 mm s−1, taking water-based analytes as an example.


2021 ◽  
Author(s):  
Yujian Liu ◽  
Cheng Li ◽  
Shangchun Fan ◽  
Xuefeng Song

AbstractRegarding the dependence of the treatment of removing polymethyl methacrylate (PMMA) from graphene upon the prestress in the film, two typical PMMA removal methods including acetone-vaporing and high-temperature annealing were investigated based on the opto-mechanical behaviors of the developed optical fiber Fabry-Perot (F-P) resonant sensor with a 125-µm diameter and ∼10-layer-thickness graphene diaphragm. The measured resonant responses showed that the F-P sensor via annealing process exhibited the resonant frequency of 481 kHz and quality factor of 1 034 at ∼2 Pa and room temperature, which are respectively 2.5 times and 33 times larger than the acetone-treated sensor. Moreover, the former achieved a high sensitivity of 110.4 kHz/kPa in the tested range of 2 Pa–2.5 kPa, apparently superior to the sensitivity of 16.2 kHz/kPa obtained in the latter. However, the time drift of resonant frequency also mostly tended to occur in the annealed sensor, thereby shedding light on the opto-mechanical characteristics of graphene-based F-P resonant sensors, along with an optimized optical excitation and detection scheme.


2021 ◽  
Author(s):  
Florentin Vasile ◽  
Alexandru Craciun ◽  
Marian Vladescu ◽  
Paul Schiopu ◽  
Valentin Feies ◽  
...  

2021 ◽  
Author(s):  
Ankur Gupta

With the technological advancement in micro-electro-mechanical systems (MEMS), microfabrication processes along with digital electronics together have opened novel avenues to the development of small-scale smart sensingdevices capable of improved sensitivity with a lower cost of fabrication and relatively small power consumption. This article aims to provide the overview of the recent work carried out on the fabrication methodologies adoptedto develop silicon based resonant sensors. A detailed discussion has been carried out to understand critical steps involved in the fabrication of the silicon-based MEMS resonator. Some challenges starting from the materialsselection to the ?final phase of obtaining a compact MEMS resonator device for its fabrication have also been explored critically.


Sign in / Sign up

Export Citation Format

Share Document