choline acetyl transferase
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Seth Currlin ◽  
Harry Nick ◽  
Jerelyn Nick ◽  
Maigan Brusko ◽  
Hunter Hakimian ◽  
...  

As secondary lymphoid organs, the spleen and lymph node represent important hubs for both innate and adaptive immunity. Neuroanatomical and tracing data, largely derived from rodents, suggest that lymph nodes contain sensory and sympathetic innervation, whereas the spleen contains postganglionic sympathetic innervation, with conflicting views regarding the existence of cholinergic or vagal innervation. Herein, we map the neuronal, vascular, and sinus cell networks from human spleen and lymph node using highly multiplexed CODEX (CO-Detection by indEXing) and 3D light sheet microscopy of cleared tissues. These data demonstrate striking delineation of two distinct layers within the lymph node subcapsular sinus-the ceiling defined by Podoplanin expression and floor by LYVE1, which overlays the lymph node follicles. Within the lymph node interior, we observed a mesh-like vessel network innervated with GAP43 and beta3-tubulin. Dense perivascular innervation occurred in both tissues, including a subset of axonal processes expressing choline acetyl transferase (ChAT). Four neuronal markers (ChAT, PGP9.5, tyrosine hydroxylase, and beta3-tubulin) localized to the arterial tunica externa suggest expression in the nervi vasorum while GAP43 was expressed within the internal elastic membrane of arteries. These data represent highly novel 3D visualization of perivascular and periductal autonomic innervation within these two key human organs.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huichen Zhu ◽  
Lu Cong ◽  
Yi Chen ◽  
Shaoyi Chen ◽  
Lingke Chen ◽  
...  

Abstract Background Post-operative cognitive dysfunction (POCD) is an overarching term used to describe cognitive impairment identified in the preoperative or post-operative period. After surgical operations, older patients are particularly vulnerable to memory disturbances and other types of cognitive impairment. However, the pathogenesis of POCD remains unclear with no confirmed preventable or treatable strategy available. Our previous study demonstrated that the concentration of choline acetyl transferase in the cerebral spinal fluid was a predictive factor of POCD and that donepezil, which is an acetylcholinesterase inhibitor used in clinical settings for the treatment of Alzheimer’s disease, can prevent learning and memory impairment after anaesthesia/surgery in aged mice. This study aimed to determine the critical role of donepezil in preventing cognitive impairment in elderly patients undergoing orthopaedic surgery. Methods A multicentre, double-blind, placebo-controlled, crossover clinical trial will be performed to assess the efficacy of donepezil in elderly patients undergoing orthopaedic surgery. Participants (n = 360) will receive donepezil (5 mg once daily) or placebo from 1 day prior to surgery until 5 days after surgery. Neuropsychological tests will be measured at 1 day before the operation and 1 week, 1 month, 6 months and 1 year after the operation. Discussion This research project mainly aimed to study the effects of donepezil in elderly patients undergoing orthopaedic surgery due to underlying POCD and to investigate the underlying physiological and neurobiological mechanisms of these effects. The results may provide important implications for the development of effective interfering strategies, specifically regarding cognitive dysfunction therapy using drugs. Trial registration ClinicalTrials.govNCT04423276. Registered on 14 June 2020


2021 ◽  
Author(s):  
Huichen Zhu ◽  
Lu Cong ◽  
Yi Chen ◽  
Shaoyi Chen ◽  
Lingke Chen ◽  
...  

Abstract Background Post-operative cognitive dysfunction (POCD) is an overarching term used to describe cognitive impairment identified in the preoperative or post-operative period. After surgical operations, older patients are particularly vulnerable to memory disturbances and other types of cognitive impairment. However, the pathogenesis of POCD remains unclear and no confirmed preventable or treatment strategy avilable. Our previous study demonstrated that the concentration of choline acetyl transferase in the cerebral spinal fliud was a predictive factor of POCD, and donepezil is an acetylcholinesterase inhibitor which was used in clinical for the treatment of alzheimer's disease can prevent the learning and memory impairment after anesthesia/surgery in aged mice. This study aimed to determine the critical role of donepezil in preventing cognitive impairment in elder patients undergoing orthopaedic surgery. Methods A multicentre, double-blind, placebo-controlled, crossover clinical trial will be performed to assess the efficacy of donepezil in elderly patients undergoing orthopaedic surgery. Participants (n = 360) will receive donepezil (5 mg once daily) or placebo from 1 day prior to surgery until 5 days after surgery. Neuropsychological tests will be measured at 1 day before the operation and 1 week, 1 month, 6 months and 1 year after the operation. Discussion This research project mainly aimed to study the effects of donepezil in elderly patients undergoing orthopaedic surgery due to underlying POCD and to investigate the underlying physiological and neurobiological mechanisms of these effects. The results may provide important implications for the development of effective interfering strategies, specifically regarding cognitive dysfunction therapy using drugs. Trial registration: ClinicalTrials.gov, NCT04423276. Registered on 14 June 2020.


Author(s):  
Olawale Mathias Akinlade ◽  
Bamidele Owoyele ◽  
Olufemi Ayodele Soladoye

Abstract Objectives There has been increasing recognition of the significant relationship between the autonomic nervous system and cardiovascular sequel in diabetes mellitus (DM) patients. Diabetic cardiac autonomic neuropathy (DCAN) still poses a treatment challenge in the clinical settings despite several research interventions. This study was designed to investigate the effect of carvedilol on experimentally induced DCAN in type 2 DM rat model. Methods DCAN was induced in 42 Wistar rats using high fat diet (HFD) for eight weeks, thereafter streptozotocin (STZ) at 25 mg/kg daily for five days. DCAN features were then assessed using non-invasive time and frequency varying holter electrocardiogram (ECG), invasive biomarkers, cardiac histology and cardiac nerve density. Results Carvedilol significantly ameliorated the effects of DCAN on noradrenaline (p=0.010) and advanced glycated end products (AGEs) (p<0.0001). Similarly, carvedilol reversed the reduction in levels of antioxidants, sorbitol dehydrogenase (SD) activity (p=0.009) nerve growth factors (p<0.0001) and choline acetyl-transferase (p=0.031) following DCAN induction. Furthermore, heart rate variability (HRV) indices which were also reduced with DCAN induction were also ameliorated by carvedilol. However, carvedilol had no significant effect on cardiac neuronal dystrophy and reduced cardiac nerve densities. Conclusions Carvedilol improves physiological HRV indices and biomarkers but not structural lesions. Early detection of DCAN and intervention with carvedilol may prevent progression of autonomic neurologic sequel.


2020 ◽  
Vol 319 (1) ◽  
pp. H3-H12 ◽  
Author(s):  
Jhansi Dyavanapalli ◽  
Aloysius James Hora ◽  
Joan B. Escobar ◽  
John Schloen ◽  
Mary Kate Dwyer ◽  
...  

Intracardiac ganglia form the final common pathway for the parasympathetic innervation of the heart. This study has used a novel chemogenetic approach within transgenic ChAT-Cre rats [expressing only Cre-recombinase in choline acetyl transferase (ChAT) neurons] to selectively increase intracardiac cholinergic parasympathetic activity to the heart in a pressure overload-induced heart failure model. The findings from this study confirm that selective activation of intracardiac cholinergic neurons lessens cardiac dysfunction and mortality seen in heart failure, identifying a novel downstream cardiac-selective target for increasing cardioprotective parasympathetic activity in heart failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Li ◽  
Xiong-Fei Luo ◽  
Si-Wen Liu ◽  
Na Zhao ◽  
Hua-Nan Li ◽  
...  

Changes in gut motility and visceral hypersensitivity are two major features of irritable bowel syndrome (IBS). Current drug treatments are often poorly efficacious, with many side effects for patients with IBS. Complementary therapies, such as acupuncture or abdominal massage, have received more attention in recent years. In this study, a rat model of IBS with diarrhea (IBS-D) was established by instillation of acetic acid from the colon. The effects of abdominal massage on changes in gut motility, visceral hypersensitivity, and the possible mechanism were investigated. Continuous abdominal massage could decrease the stool consistency score and increase the efflux time of glass beads compared with model groups, while also decreasing mast cell counts in IBS-D rats. The mRNA and protein expressions of neuronal nitric oxide synthase (nNOS), choline acetyl transferase (CHAT), and protein gene product 9.5 (PGP9.5) were significantly upregulated by continuous abdominal massage compared with model groups. Continuous abdominal massage also improved the ultrastructure of enteric glial cells (EGCs) by decreasing the number of mitochondria and increasing the level of the heterochromatin. Meanwhile, continuous abdominal massage could upregulate the expression of glial cell line-derived neurotrophic factor (GDNF) and P-Akt/Akt. Furthermore, it could reduce visceral hypersensitivity and improve the IBS-D symptoms by regulating the phosphoinositide 3-kinase (PI3K)-Akt pathway, which would provide a novel method for the treatment of IBS-D in the clinical setting.


2018 ◽  
Vol 206 (4-5) ◽  
pp. 183-195
Author(s):  
Daniel Anetsberger ◽  
Stefanie Kürten ◽  
Samir Jabari ◽  
Axel Brehmer

Our knowledge about human gastric enteric neuron types is even more limited than that of human intestinal types. Here, we immunohistochemically stained wholemounts and sections of gastric specimens obtained from 18 tumor-resected patients. Myenteric wholemounts were labeled for choline acetyl transferase (ChAT), neuronal nitric oxide synthase (NOS), and the human neuronal protein HuC/D (as pan­neuronal marker for quantitative analysis) or alternatively for neurofilament (for morphological evaluation). ChAT-positive neurons outnumbered NOS-positive neurons (56 vs. 27%), and neurons negative for both markers accounted for 17%. Two larger groups of neurons (each between 12 and 14%) costained for ChAT and vasoactive intestinal peptide (VIP) or for NOS and VIP, respectively. Clear morphochemical correlation was found for uniaxonal stubby type I neurons (ChAT+; putative excitatory inter- or motor neurons), for uniaxonal spiny type I neurons (NOS+/VIP+; putative inhibitory motor or interneurons), and for multiaxonal type II neurons (ChAT+; putative afferent neurons; immunostaining of additional wholemounts revealed their coreactivity for somatostatin). Whereas these latter neuron types were already known from the human intestine, the morphology of gastric myenteric neurons coreactive for ChAT and VIP was newly described: they had numerous short, extremely thin dendrites and resembled, together with their cell bodies, a “hairy” head. In our sections, nerve fibers coreactive for ChAT and VIP were commonly found only in the mucosa. We suggest these myenteric ChAT+/VIP+/hairy neurons to be mucosal effector neurons. In contrast to myenteric neurons, the much less common submucosal neurons were not embedded in a continuous plexus and did not display any clear morphochemical phenotypes.


Dose-Response ◽  
2017 ◽  
Vol 15 (2) ◽  
pp. 155932581771151 ◽  
Author(s):  
Wei Sun ◽  
Yudan Yang ◽  
Hongmei Yu ◽  
Luowei Wang ◽  
Su Pan

Aim: The phenomena of hypergravity and microwave radiation are widespread, which cause more and more concern for the hazards to human health. The aim of this study was to investigate the synergistic effect of microwave radiation and hypergravity on rats and observe the protective effect of Rana sylvatica Le conte oil. Methods: Rats were exposed to microwave radiation and hypergravity, and the rat weight, the climbing pole height, serum enzyme activities, blood urea nitrogen concentration, and total antioxidant capacity were detected. Results: The climbing pole height, the activities of choline acetyl transferase and cholinesterase, and the total antioxidant capacity decreased, whereas the activities of alanine aminotransferase, aspartate aminotransferase, areatine kinase, isocitric dehydrogenase, hydroxybutyrate dehydrogenase, and the blood urea nitrogen concentration increased in the hypergravity irradiation group as compared with the others. Conclusion: These results imply that the motion and nervous system of rats might be affected critically by the synergistic effect of microwave radiation and hypergravity, and it causes damage to most rat organs, such as the bone, skeletal muscle, liver, heart, and kidney, and the antioxidant effect is also damaged, while the injury resulted from it could be protected by Rana sylvatica Le conte oil.


Sign in / Sign up

Export Citation Format

Share Document