adult disease
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 64)

H-INDEX

57
(FIVE YEARS 6)

2021 ◽  
Vol 23 (1) ◽  
pp. 293
Author(s):  
Gabriela Loscalzo ◽  
Julia Scheel ◽  
José Santiago Ibañez Cabellos ◽  
Eva García-Lopez ◽  
Shailendra Gupta ◽  
...  

In a prospective study, 48 fetuses were evaluated with Doppler ultrasound after 34 weeks and classified, according to the cerebroplacental ratio (CPR) and estimated fetal weight (EFW), into fetuses with normal growth and fetuses with late-onset fetal growth restriction (LO-FGR). Overexpression of miRNAs from neonatal cord blood belonging to LO-FGR fetuses, was validated by real-time PCR. In addition, functional characterization of overexpressed miRNAs was performed by analyzing overrepresented pathways, gene ontologies, and prioritization of synergistically working miRNAs. Three miRNAs: miR-25-3p, miR-185-5p and miR-132-3p, were significantly overexpressed in cord blood of LO-FGR fetuses. Pathway and gene ontology analysis revealed over-representation of certain molecular pathways associated with cardiac development and neuron death. In addition, prioritization of synergistically working miRNAs highlighted the importance of miR-185-5p and miR-25-3p in cholesterol efflux and starvation responses associated with LO-FGR phenotypes. Evaluation of miR-25-3p; miR-132-3p and miR-185-5p might serve as molecular biomarkers for the diagnosis and management of LO-FGR; improving the understanding of its influence on adult disease.


Author(s):  
Rebecca Jean Ryznar ◽  
Lacie Phibbs ◽  
Lon J. Van Winkle

Embryo/fetal nutrition and the environment in the reproductive tract influence the subsequent risk of developing adult diseases and disorders, as formulated in the Barker hypothesis. Metabolic syndrome, obesity, heart disease, and hypertension in adulthood have all been linked to unwanted epigenetic programing in embryos and fetuses. Multiple studies support the conclusion that environmental challenges, such as a maternal low-protein diet, can change one-carbon amino acid metabolism and, thus, alter histone and DNA epigenetic modifications. Since histones influence gene expression and the program of embryo development, these epigenetic changes likely contribute to the risk of adult disease onset not just in the directly affected offspring, but for multiple generations to come. In this paper, we hypothesize that the effects of parental nutritional status on fetal epigenetic programming are transgenerational and warrant further investigation. Numerous studies supporting this hypothesis are reviewed, and potential research techniques to study these transgenerational epigenetic effects are offered.


2021 ◽  
pp. 167-173
Author(s):  
Johann Craus
Keyword(s):  

Author(s):  
Angela Ma ◽  
L. Alexa Thompson ◽  
Thomas Corsiatto ◽  
Donna Hurteau ◽  
Gregory J. Tyrrell

This work describes the epidemiology of invasive infections caused by the bacterium group B Streptococcus (GBS) in Alberta, Canada. We show that rates of invasive GBS disease have increased from 2014 to 2020 for both adult disease and late-onset disease in neonates, whereas the rate of early onset disease in neonates has decreased. We also show that the rate of resistance to erythromycin (an antibiotic used to treat GBS) has also increased in this time.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4927
Author(s):  
Mahmoud Aghaei ◽  
Ahmad Nasimian ◽  
Marveh Rahmati ◽  
Philip Kawalec ◽  
Filip Machaj ◽  
...  

Background: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children, and is associated with a poor prognosis in patients presenting with recurrent or metastatic disease. The unfolded protein response (UPR) plays pivotal roles in tumor development and resistance to therapy, including RMS. Methods: In this study, we used immunohistochemistry and a tissue microarray (TMA) on human RMS and normal skeletal muscle to evaluate the expression of key UPR proteins (GRP78/BiP, IRE1α and cytosolic/nuclear XBP1 (spliced XBP1-sXBP1)) in the four main RMS subtypes: alveolar (ARMS), embryonal (ERMS), pleomorphic (PRMS) and sclerosing/spindle cell (SRMS) RMS. We also investigated the correlation of these proteins with the risk of RMS and several clinicopathological indices, such as lymph node involvement, distant metastasis, tumor stage and tumor scores. Results: Our results revealed that the expression of BiP, sXBP1, and IRE1α, but not cytosolic XBP1, are significantly associated with RMS (BiP and sXBP1 p-value = 0.0001, IRE1 p-value = 0.001) in all of the studied types of RMS tumors (n = 192) compared to normal skeletal muscle tissues (n = 16). In addition, significant correlations of BiP with the lymph node score (p = 0.05), and of IRE1α (p value = 0.004), cytosolic XBP1 (p = 0.001) and sXBP1 (p value = 0.001) with the stage score were observed. At the subtype level, BiP and sXBP1 expression were significantly associated with all subtypes of RMS, whereas IRE1α was associated with ARMS, PRMS and ERMS, and cytosolic XBP1 expression was associated with ARMS and SRMS. Importantly, the expression levels of IRE1α and sXBP1 were more pronounced in ARMS than in any of the other subtypes. The results also showed correlations of BiP with the lymph node score in ARMS (p value = 0.05), and of sXBP1 with the tumor score in PRMS (p value = 0.002). Conclusions: In summary, this study demonstrates that the overall UPR is upregulated and, more specifically, that the IRE1/sXBP1 axis is active in RMS. The subtype and stage-specific dependency on the UPR machinery in RMS may open new avenues for the development of novel targeted therapeutic strategies and the identification of specific tumor markers in this rare but deadly childhood and young-adult disease.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3278
Author(s):  
Michael D. Thompson ◽  
Brian J. DeBosch

Developmental programming of chronic diseases by perinatal exposures/events is the basic tenet of the developmental origins hypothesis of adult disease (DOHaD). With consumption of fructose becoming more common in the diet, the effect of fructose exposure during pregnancy and lactation is of increasing relevance. Human studies have identified a clear effect of fructose consumption on maternal health, but little is known of the direct or indirect effects on offspring. Animal models have been utilized to evaluate this concept and an association between maternal fructose and offspring chronic disease, including hypertension and metabolic syndrome. This review will address the mechanisms of developmental programming by maternal fructose and potential options for intervention.


2021 ◽  
Author(s):  
Anne-Sophie Pepin ◽  
Christine Lafleur ◽  
Romain Lambrot ◽  
Vanessa Dumeaux ◽  
Sarah Kimmins

Parental environmental exposures can strongly influence descendant risks for adult disease. Metabolic disorders arise from the intersection of environmental and genetic risk factors, with epigenetic inheritance being at the center of the familial cycle of transgenerational disease. How paternal high-fat diet changes the sperm chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. Using a genetic model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic dysfunction. We show that obesity-induced alterations in sperm H3K4me3 associated with offspring phenotypes and corresponded to embryonic and placental chromatin profiles and gene expression. Transgenerational susceptibility to metabolic disease was only observed when grandsires had a pre-existing genetic predisposition to metabolic dysfunction that was associated with enhanced alterations to sperm H3K4me3. This non-DNA based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability and may lead to novel routes for the prevention of disease.


2021 ◽  
Vol 22 (17) ◽  
pp. 9523
Author(s):  
Emily Catherine Cheung ◽  
Matthew Wyatt Kay ◽  
Kathryn Jaques Schunke

Pediatric obstructive sleep apnea has significant negative effects on health and behavior in childhood including depression, failure to thrive, neurocognitive impairment, and behavioral issues. It is strongly associated with an increased risk for chronic adult disease such as obesity and diabetes, accelerated atherosclerosis, and endothelial dysfunction. Accumulating evidence suggests that adult-onset non-communicable diseases may originate from early life through a process by which an insult applied at a critical developmental window causes long-term effects on the structure or function of an organism. In recent years, there has been increased interest in the role of epigenetic mechanisms in the pathogenesis of adult disease susceptibility. Epigenetic mechanisms that influence adaptive variability include histone modifications, non-coding RNAs, and DNA methylation. This review will highlight what is currently known about the phenotypic associations of epigenetic modifications in pediatric obstructive sleep apnea and will emphasize the importance of epigenetic changes as both modulators of chronic disease and potential therapeutic targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1000
Author(s):  
Elena Obrador ◽  
Rosario Salvador-Palmer ◽  
Rafael López-Blanch ◽  
Ryan W. Dellinger ◽  
José M. Estrela

Charcot first described amyotrophic lateral sclerosis (ALS) between 1865 and 1874 as a sporadic adult disease resulting from the idiopathic progressive degeneration of the motor neuronal system, resulting in rapid, progressive, and generalized muscle weakness and atrophy. There is no cure for ALS and no proven therapy to prevent it or reverse its course. There are two drugs specifically approved for the treatment of ALS, riluzol and edaravone, and many others have already been tested or are following clinical trials. However, at the present moment, we still cannot glimpse a true breakthrough in the treatment of this devastating disease. Nevertheless, our understanding of the pathophysiology of ALS is constantly growing. Based on this background, we know that oxidative stress, alterations in the NAD+-dependent metabolism and redox status, and abnormal mitochondrial dynamics and function in the motor neurons are at the core of the problem. Thus, different antioxidant molecules or NAD+ generators have been proposed for the therapy of ALS. This review analyzes these options not only in light of their use as individual molecules, but with special emphasis on their potential association, and even as part of broader combined multi-therapies.


Sign in / Sign up

Export Citation Format

Share Document