dissimilar weld
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 66)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
SP. Arunkumar ◽  
C. Prabha ◽  
Rajasekaran Saminathan ◽  
Jabril A. Khamaj ◽  
M. Viswanath ◽  
...  

Author(s):  
R. Sokkalingam ◽  
B. Pravallika ◽  
K. Sivaprasad ◽  
V. Muthupandi ◽  
K. G. Prashanth

AbstractHigh-entropy alloy, a new generation material, exhibits superior structural properties. For high-temperature applications, where dissimilar materials are in demand, HEAs may be joined with commercially available structural materials to improve their performance-life ratio. In this connection, a dissimilar joint was fabricated by gas tungsten arc welding between Al0.1CoCrFeNi-HEA and Inconel 718. The columnar dendritic grains are growing epitaxially at the Al0.1CoCrFeNi-HEA/weld metal interface, where their compositions are matching. While the composition misfit at the weld metal/Inconel 718 interface, reveals the non-epitaxial mode of solidification. In addition, the fusion zone exhibits the porosity and micro-segregation of NbC and Laves phases. The joint shows a joint efficiency of ~ 88%, where the strength is observed to be 644 MPa with 21% ductility. The results demonstrate the applicability of GTAW in fabricating the dissimilar weld joints between HEA and Inconel 718 for structural applications. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6180
Author(s):  
Saulius Baskutis ◽  
Jolanta Baskutiene ◽  
Regita Bendikiene ◽  
Antanas Ciuplys ◽  
Karolis Dutkus

The present study utilized a metal inert gas welding (MIG) to make a dissimilar weld of stainless steel AISI 304, 314, 316L, 420 grades and a standard structural steel S355MC. It refers to a weld joining two materials from different alloy systems commonly used in heat exchangers, pressure vessels, and power plant systems. Obviously, maintaining the integrity of such welds is of paramount importance to the safety issues. Therefore, detailed microscopic and experimental studies were performed to evaluate the reliability of these welds. The microscopic analysis did not reveal any presence of weld defects such as porosity or cracks, which ensured that MIG process parameters were properly selected. The performance of dissimilar welds was assessed by hardness and tensile tests. The hardness profiles revealed differences between austenitic and martensitic steel welds that later showed extremely high values in the heat-affected zone (HAZ), which caused fractures in this zone during tensile test. The welds of all austenitic steel grades withstood the tensile test, showing an average tensile strength of 472 MPa with fractures observed in the base metal zone. It made clear that the use of a filler rod 308LSI is suitable only for the austenitic stainless and structural steel dissimilar welds and not appropriate for martensitic-structural steel welds. The achieved results revealed that the higher hardness of the martensitic phase in the HAZ of AISI 420 is closely related with the formation of untempered coarse martensitic structure and higher carbon content.


Author(s):  
Saulius Baskutis ◽  
Jolanta Baskutiene ◽  
Regita Bendikiene ◽  
Antanas Ciuplys ◽  
Karolis Dutkus

The present study utilizes a metal inert gas welding (MIG) to make a dissimilar weld joint of different stainless steel grades AISI 304, 314, 316L, 420 and a standard structural steel S355MC to estimate the correlation of a microstructure and the mechanical properties. The microstructure of the base metals (BM), the heat affected zone (HAZ), the fusion zone (FZ) and the weld seam were analyzed using optical microscopy. Optical microscopy did not reveal any presence of weld defects such as porosity or cracks. The analysis of microstructure showed that both the austenitic and martensitic stainless steel weld structures contain some retained delta ferrite and coarse Me23C6 carbides in the HAZ, while the FZ exhibits delta ferrite and some retained austenite. The hardness profiles revealed difference between austenitic and martensitic steel welds that the later showed extremely high values in the HAZ (~500 HV/0.1) which causes fracture in this zone. The welds of all austenitic steel grades withstood tensile test, showing the average tensile strength of 472 MPa with fracture observed in the base metal zone. It made clear that the use of a filler rod 308LSI is suitable only for the austenitic stainless and structural steel dissimilar welds, and not appropriate for martensitic-structural steel welds. The achieved results revealed that the higher hardness of the martensitic phase in the HAZ of AISI 420 is closely related with the formation of untempered coarse martensitic structure and higher carbon content.


2021 ◽  
Vol 15 (3) ◽  
pp. 8332-8343
Author(s):  
Oyindamola Kayode ◽  
Esther Titilayo Akinlabi

Joining of aluminium and magnesium alloys frequently pose significant challenges to the extent where joining may seem impossible, due to differences in the physical, metallurgical, and chemical properties of the materials. Friction stir welding is a solid-state welding technique which uses a non-consumable tool to join metals. This study examines the dissimilar friction stir welding of 3 mm thick AA1050 and AZ91D alloy sheets. Successful defect-free joints were achieved at rotational speeds of 400 rpm and 600 rpm, and a constant traverse speed of 50 mm/min. The metallurgical investigations used to characterize the microstructure of the welds are optical microscopy (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The microstructures of the samples show distinct morphology attributed to their different rotational speeds. However, Al3Mg2 intermetallics (IMCs) phase was detected in the white bands present in both weld samples. The IMCs were formed through solid-state diffusion. The mechanical properties characterizations includes the microhardness profiles and tensile testing. The variation in the rotational speeds do not have a significant effect on the microhardness distribution of the weld samples. The tensile strength of the dissimilar weld improved substantially with the presence of an interpenetration feature (IPF).


2021 ◽  
Vol 892 ◽  
pp. 150-158
Author(s):  
Sugianto ◽  
Riswanda ◽  
Kadir Harlian ◽  
Akhyar Akhyar ◽  
Aminur ◽  
...  

Dissimilar weld-metal joints in aluminum alloys 5083 and 6061-T6 are often found in aircraft, railroad structures, ships, bridges, oil platforms, and building structures. However, welding of dissimilar metals is relatively more difficult due to the different metallurgy and thermophysical properties of the two alloys. The purpose of this study is to evaluate the physical-mechanical properties of the Tungsten Arc Welding (GTAW) process through numerical simulations of different welded joints between the 5083 and 6061-T6 aluminum alloys. The GTAW welding simulation process is carried out by 300 x 100 x 3 mm plate butt joints along 300 mm. GTAW weld metal is prepared for tensile test samples and metal alloy composition, the test is observed in the base metal and welded area. The results of the chemical composition test of the weld metal obtained that the composition is close to Al 5083 base metal so that the mechanical properties of the weld metal tend to be identical with Al 5083 alloy. The results of numerical simulation on the mechanical properties of GTAW weld metal at temperature conditions of 25 to 700 °C obtained several things, including 1) the range of thermal conductivity decreased from 174.393 to 86.424 W/mK. 2) The density increased from 2,348 to 2,663 gr/cm3. 3), the young modulus appears to decrease from 68,667 to 0 GPa. 4) the shear modulus decreases from 25,724 to 0 GPa. 5) the type of heat increases from 0.904 to 17,306 J/gK, and 6) the Poisson ratio increased from 0.335 to 0.5.


Author(s):  
A Venkatakrishna ◽  
AK Lakshminarayanan ◽  
P Vasantharaja ◽  
M Vasudevan

Filler-free (FF) welding processes namely, Activated Tungsten Inert Gas welding (ATIG), Laser Beam Welding (LBW), and Friction Stir Welding (FSW) were utilized for joining the nuclear grade 9Cr-1Mo-V-Nb ferritic-martensitic steel and 316 L(N) austenitic stainless steel. A comparative investigation was made by assessing the weld geometries, metallurgical features, material mixing proportions, carbon diffusion behaviour, and mechanical properties of the post-weld heat-treated (PWHT) dissimilar weld joints. Geometries of the weld zones were observed with the transverse and longitudinal macrographs. Metallurgical features were examined by optical microscopy (OM) and Scanning electron microscopy (SEM). Three-phase microstructures were identified in the dissimilar weld zones (DWZ). The elemental distributions were identified by Energy-dispersive X-ray spectroscopy (EDAX). The mixing proportions of the dissimilar alloys and the formation of δ-ferrite in the dissimilar heat-affected zones (HAZ) and DWZ were analytically quantified. Moreover, the diffusion activity of carbides/interstitial carbon atoms was examined by Secondary ion mass spectroscopy (SIMS). In the FSW joints, the intermingled microstructures are recorded with high and stabilized hardness values as compared to the DWZ of the ATIG and LBW joints. In the transverse tensile test, all FF joints were failed at the 316 L(N) base metal (BM) region. Tensile and impact testing of all weld metal indicated that, the weld metal region of the LBW joint exhibited higher strength and lower toughness as compared to the ATIG and FSW joints. The presence of untransformed, recrystallized fine equiaxed austenite along and refined martensitic structure arranged in an alternate layers within the weld metal region of FSW joint caused the higher toughness property than the ATIG and LBW joints.


Sign in / Sign up

Export Citation Format

Share Document