multispectral data
Recently Published Documents


TOTAL DOCUMENTS

620
(FIVE YEARS 190)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 184 ◽  
pp. 148-164
Author(s):  
Anna Jarocińska ◽  
Dominik Kopeć ◽  
Marlena Kycko ◽  
Hubert Piórkowski ◽  
Agnieszka Błońska

2021 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Victor Makarichev ◽  
Irina Vasilyeva ◽  
Vladimir Lukin ◽  
Benoit Vozel ◽  
Andrii Shelestov ◽  
...  

Lossy compression of remote sensing data has found numerous applications. Several requirements are usually imposed on methods and algorithms to be used. A large compression ratio has to be provided, introduced distortions should not lead to sufficient reduction of classification accuracy, compression has to be realized quickly enough, etc. An additional requirement could be to provide privacy of compressed data. In this paper, we show that these requirements can be easily and effectively realized by compression based on discrete atomic transform (DAT). Three-channel remote sensing (RS) images that are part of multispectral data are used as examples. It is demonstrated that the quality of images compressed by DAT can be varied and controlled by setting maximal absolute deviation. This parameter also strictly relates to more traditional metrics as root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) that can be controlled. It is also shown that there are several variants of DAT having different depths. Their performances are compared from different viewpoints, and the recommendations of transform depth are given. Effects of lossy compression on three-channel image classification using the maximum likelihood (ML) approach are studied. It is shown that the total probability of correct classification remains almost the same for a wide range of distortions introduced by lossy compression, although some variations of correct classification probabilities take place for particular classes depending on peculiarities of feature distributions. Experiments are carried out for multispectral Sentinel images of different complexities.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kai Zhang ◽  
Chengquan Hu ◽  
Hang Yu

Aiming at the problems of high-resolution remote sensing images with many features and low classification accuracy using a single feature description, a remote sensing image land classification model based on deep learning from the perspective of ecological resource utilization is proposed. Firstly, the remote sensing image obtained by Gaofen-1 satellite is preprocessed, including multispectral data and panchromatic data. Then, the color, texture, shape, and local features are extracted from the image data, and the feature-level image fusion method is used to associate these features to realize the fusion of remote sensing image features. Finally, the fused image features are input into the trained depth belief network (DBN) for processing, and the land type is obtained by the Softmax classifier. Based on the Keras and TensorFlow platform, the experimental analysis of the proposed model shows that it can clearly classify all land types, and the overall accuracy, F1 value, and reasoning time of the classification results are 97.86%, 87.25%, and 128 ms, respectively, which are better than other comparative models.


2021 ◽  
Author(s):  
Athar Abdurrahman Bayanuddin ◽  
Zylshal Zylshal ◽  
Ferman Setia Nugroho ◽  
Sukentyas Estuti Siwi ◽  
Mulia Inda Rahayu ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11486
Author(s):  
Shahab Ud Din ◽  
Khan Muhammad ◽  
Muhammad Fawad Akbar Khan ◽  
Shahid Bashir ◽  
Muhammad Sajid ◽  
...  

Despite low spatial resolutions, thermal infrared bands (TIRs) are generally more suitable for mineral mapping due to fundamental tones and high penetration in vegetated areas compared to shortwave infrared (SWIR) bands. However, the weak overtone combinations of SWIR bands for minerals can be compensated by fusing SWIR-bearing data (Sentinel-2 and Landsat-8) with other multispectral data containing fundamental tones from TIR bands. In this paper, marble in a granitic complex in Mardan District (Khyber Pakhtunkhwa) in Pakistan is discriminated by fusing feature-oriented principal component selection (FPCS) obtained from the ASTER, Landsat-8 Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS) and Sentinel-2 MSI data. Cloud computing from Google Earth Engine (GEE) was used to apply FPCS before and after the decorrelation stretching of Landsat-8, ASTER, and Sentinel-2 MSI data containing five (5) bands in the Landsat-8 OLI and TIRS and six (6) bands each in the ASTER and Sentinel-2 MSI datasets, resulting in 34 components (i.e., 2 × 17 components). A weighted linear combination of selected three components was used to map granite and marble. The samples collected during field visits and petrographic analysis confirmed the remote sensing results by revealing the region’s precise contact and extent of marble and granite rock types. The experimental results reflected the theoretical advantages of the proposed approach compared with the conventional stacking of band data for PCA-based fusion. The proposed methodology was also applied to delineate granite deposits in Karoonjhar Mountains, Nagarparker (Sindh province) and the Kotah Dome, Malakand (Khyber Pakhtunkhwa Province) in Pakistan. The paper presents a cost-effective methodology by the fusion of FPCS components for granite/marble mapping during mineral resource estimation. The importance of SWIR-bearing components in fusion represents minor minerals present in granite that could be used to model the engineering properties of the rock mass.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 140
Author(s):  
Yuri Taddia ◽  
Corinne Corbau ◽  
Joana Buoninsegni ◽  
Umberto Simeoni ◽  
Alberto Pellegrinelli

Anthropogenic marine debris (AMD) represent a global threat for aquatic environments. It is important to locate and monitor the distribution and presence of macroplastics along beaches to prevent degradation into microplastics (MP), which are potentially more harmful and more difficult to remove. UAV imaging represents a quick method for acquiring pictures with a ground spatial resolution of a few centimeters. In this work, we investigate strategies for AMD mapping on beaches with different ground resolutions and with elevation and multispectral data in support of RGB orthomosaics. Operators with varying levels of expertise and knowledge of the coastal environment map the AMD on four to five transects manually, using a range of photogrammetric tools. The initial survey was repeated after one year; in both surveys, beach litter was collected and further analyzed in the laboratory. Operators assign three levels of confidence when recognizing and describing AMD. Preliminary validation of results shows that items identified with high confidence were almost always classified properly. Approaching the detected items in terms of surface instead of a simple count increased the percentage of mapped litter significantly when compared to those collected. Multispectral data in near-infrared (NIR) wavelengths and digital surface models (DSMs) did not significantly improve the efficiency of manual mapping, even if vegetation features were removed using NDVI maps. In conclusion, this research shows that a good solution for performing beach AMD mapping can be represented by using RGB imagery with a spatial resolution of about 200 pix/m for detecting macroplastics and, in particular, focusing on the largest items. From the point of view of assessing and monitoring potential sources of MP, this approach is not only feasible but also quick, practical, and sustainable.


2021 ◽  
Vol 13 (23) ◽  
pp. 4733
Author(s):  
Louis Will Jochems ◽  
Jodi Brandt ◽  
Andrew Monks ◽  
Megan Cattau ◽  
Nicholas Kolarik ◽  
...  

Detecting newly established invasive plants is key to prevent further spread. Traditional field surveys are challenging and often insufficient to identify the presence and extent of invasions. This is particularly true for wetland ecosystems because of difficult access, and because floating and submergent plants may go undetected in the understory of emergent plants. Unpiloted aerial systems (UAS) have the potential to revolutionize how we monitor invasive vegetation in wetlands, but key components of the data collection and analysis workflow have not been defined. In this study, we conducted a rigorous comparison of different methodologies for mapping invasive Emergent (Typha × glauca (cattail)), Floating (Hydrocharis morsus-ranae (European frogbit)), and Submergent species (Chara spp. and Elodea canadensis) using the machine learning classifier, random forest, in a Great Lakes wetland. We compared accuracies using (a) different spatial resolutions (11 cm pixels vs. 3 cm pixels), (b) two classification approaches (pixel- vs. object-based), and (c) including structural measurements (e.g., surface/canopy height models and rugosity as textural metrics). Surprisingly, the coarser resolution (11 cm) data yielded the highest overall accuracy (OA) of 81.4%, 2.5% higher than the best performing model of the finer (3 cm) resolution data. Similarly, the Mean Area Under the Receiving Operations Characteristics Curve (AUROC) and F1 Score from the 11 cm data yielded 15.2%, and 6.5% higher scores, respectively, than those in the 3 cm data. At each spatial resolution, the top performing models were from pixel-based approaches and included surface model data over those with canopy height or multispectral data alone. Overall, high-resolution maps generated from UAS classifications will enable early detection and control of invasive plants. Our workflow is likely applicable to other wetland ecosystems threatened by invasive plants throughout the globe.


2021 ◽  
Author(s):  
N.V. Rodionova

The paper considers the use of multispectral data from the Landsat-8, Sentinel-2, Aqua and Terra satellites for monitoring pollution in the areas of open-pit coal mines in the Iskitim district of the Novosibirsk region for the period 2013–2020. The change in the values of the reflection coefficient (RC) from the surface and water bodies, the snow index NDSI during the snowmelt period, the change of NDVI in the summer, in the area of Kolyvansky and Vostochny coal mines and in the area of the Linevo village are considered. The dynamics of the aerosol optical thickness (AOT) changes, CO and CH4 concentrations in the atmosphere of the Iskitim district using the Giovanni data analysis and visualization system are shown.


Sign in / Sign up

Export Citation Format

Share Document