target sequencing
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 61)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Feng Xu ◽  
Ling-Yun Wu ◽  
Juan Guo ◽  
Qi He ◽  
Zheng Zhang ◽  
...  

Abstract Background The transformation biology of secondary AML from MDS is still not fully understood. Here, we performed a large cohort of paired self-controlled sequences including target, whole-exome and single cell sequencing to search AML transformation-related mutations (TRMs). Methods 39 target genes from paired samples from 72 patients with MDS who had undergone AML transformation were analyzed by next generation target sequencing. Whole exome and single-cell RNA sequencing were used to verify the dynamics of transformation. Results The target sequencing results showed that sixty-four out of the 72 (88.9%) patients presented presumptive TRMs involving activated signaling, transcription factors, or tumor suppressors. Of the 64 patients, most of TRMs (62.5%, 40 cases) emerged at the leukemia transformation point. All three of the remaining eight patients analyzed by paired whole exome sequencing showed TRMs which are not included in the reference targets. No patient with MDS developed into AML only by acquiring mutations involved in epigenetic modulation or RNA splicing. Single-cell sequencing in one pair sample indicated that the activated cell signaling route was related to TRMs which take place prior to phenotypic development. Of note, target sequencing defined TRMs were limited to a small set of seven genes (in the order: NRAS/KRAS, CEBPA, TP53, FLT3, CBL, PTPN11 and RUNX1, accounted for nearly 90.0% of the TRMs). Conclusions Somatic mutations involving in signaling, transcription factors, or tumor suppressors appeared to be a precondition for AML transformation from MDS. The TRMs may be considered as new therapy targets.


2021 ◽  
Author(s):  
Tham Hoang ◽  
Giang Vu ◽  
Mai Tran ◽  
Nam Vo ◽  
Quang Le ◽  
...  

Abstract Background: A global pandemic has been declared for coronavirus disease 2019 (COVID-19), which has serious impacts on human health and healthcare systems in the affected areas, including Vietnam. None of the previous studies have a framework to provide summary statistics of the virus variants and assess the severity associated with virus proteins and host cells in COVID-19 patients in Vietnam. Method: In this paper, we comprehensively investigated SARS-CoV-2 variants and immune responses in COVID-19 patients in Vietnam. We provided summary statistics of a target sequence of SARS-CoV-2 for data scientists to use in downstream analysis for therapeutic targets. For host cells, we proposed a predictive model of the severity of COVID-19 based on public datasets of hospitalization status in Vietnam, incorporating a polygenic risk score. This score uses immunogenic SNP biomarkers as indicators of COVID-19 severity. Result: We identified that the Delta variant of SARS-CoV-2 is most prevalent in southern areas of Vietnam and it is different from other areas in the world using various data sources. Our predictive models of COVID-19 severity had high accuracy (Random Forest AUC = 0.81, Elastic Net AUC = 0.7, and SVM AUC = 0.69) and showed that the use of polygenic risk scores increased the models’ predictive capabilities. Conclusion: We provided a comprehensive analysis for COVID-19 severity in Vietnam. This investigation is not only helpful for COVID-19 treatment in therapeutic target studies, but also could influence further research on the disease progression and personalized clinical outcomes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alberto H. Orta ◽  
Stephen J. Bush ◽  
Mariana Gutiérrez-Mariscal ◽  
Susana Castro-Obregón ◽  
Lorraine Jaimes-Hoy ◽  
...  

AbstractMosaic loss of the Y chromosome (LOY) is the most frequent chromosomal aberration in aging men and is strongly correlated with mortality and disease. To date, studies of LOY have only been performed in humans, and so it is unclear whether LOY is a natural consequence of our relatively long lifespan or due to exposure to human-specific external stressors. Here, we explored whether LOY could be detected in rats. We applied a locus-specific PCR and target sequencing approach that we used as a proxy to estimate LOY in 339 samples covering eleven tissues from young and old individuals. We detected LOY in four tissues of older rats. To confirm the results from the PCR screening, we re-sequenced 60 full genomes from old rats, which revealed that the Y chromosome is the sole chromosome with low copy numbers. Finally, our results suggest that LOY is associated with other structural aberrations on the Y chromosome and possibly linked to the mosaic loss of the X chromosome. This is the first report, to our knowledge, demonstrating that the patterns of LOY observed in aging men are also present in a rodent, and conclude that LOY may be a natural process in placental mammals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sho Tsuyuki ◽  
Hideyuki Takeshima ◽  
Shigeki Sekine ◽  
Yukinori Yamagata ◽  
Takayuki Ando ◽  
...  

AbstractGastric cancers can develop even after Helicobacter pylori (H. pylori) eradication in 0.2–2.9% cases per year. Since H. pylori is reported to directly activate or inactivate cancer-related pathways, molecular profiles of gastric cancers with current and past H. pylori infection may be different. Here, we aimed to analyze whether profiles of point mutation and gene amplification are different between the two groups. Current or past infection by H. pylori was determined by positive or negative amplification of H. pylori jhpr3 gene by PCR, and past infection was established by the presence of endoscopic atrophy. Among the 90 gastric cancers analyzed, 55 were with current infection, and 35 were with past infection. Target sequencing of 46 cancer-related genes revealed that 47 gastric cancers had 68 point mutations of 15 different genes, such as TP53 (36%), KRAS (4%), and PIK3CA (4%) and that gene amplification was present for ERBB2, KRAS, PIK3CA, and MET among the 26 genes assessed for copy number alterations. Gastric cancers with current and past infection had similar frequencies of TP53 mutations (38% and 31%, respectively; p = 0.652) and oncogene activation (20% and 29%, respectively; p = 0.444). Gastric cancers with current and past infection had comparable profiles of genetic alterations.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dai Peng ◽  
Zhao Ganye ◽  
Sun Gege ◽  
Xia Yanjie ◽  
Liu Ning ◽  
...  

Abstract Background Phenylketonuria (PKU) is a metabolic disease that can cause severe and irreversible brain damage without treatment. Methods Here we developed a non-invasive prenatal diagnosis (NIPD) technique based on haplotypes via paired-end molecular tags and weighting algorithm and applied it to the NIPD of PKU to evaluate its accuracy and feasibility in the early pregnancy. A custom-designed hybridization probes containing regions in phenylalanine hydroxylase (PAH) gene and its 1 Mb flanking region were used for target sequencing on genomic and maternal plasma DNA (7–13 weeks of gestation) to construct the parental haplotypes and the proband’s haplotype. Fetal haplotype was then inferred combined with the parental haplotypes and the proband’s haplotype. The presence of haplotypes linked to both the maternal and paternal mutant alleles indicated affected fetuses. The fetal genotypes were further validated by invasive prenatal diagnosis in a blinded fashion. Results This technique has been successfully applied in twenty-one cases. Six fetuses were diagnosed as patients carrying both of the mutated haplotypes inherited from their parents. Eleven fetuses were carriers of one heterozygous PAH variants, six of which were paternal and five of which were maternal. Four fetuses were absence of pathogenic alleles. All results were consistent with the prenatal diagnosis through amniotic fluid. Conclusions The results showed that our new technique applied to the genotyping of fetuses with high risk for PKU achieves an accurate detection at an early stage of pregnancy with low fetal fraction in cell free DNA.


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1395
Author(s):  
Kiyoka Sawada ◽  
Kentaro Nakayama ◽  
Kohei Nakamura ◽  
Yuki Yoshimura ◽  
Sultana Razia ◽  
...  

Recent advances in next-generation sequencing and genome medicine have contributed to treatment decisions in patients with cancer. Most advanced gynecological cancers develop resistance to chemotherapy and have a poor prognosis. Therefore, we conducted genomic tests in gynecological tumors to examine the efficacy and clinical feasibility of genotype-matched therapy. Target sequencing was performed in 20 cases of gynecological cancers (cervical cancer, 6; endometrial cancer, 6; and ovarian cancer, 6). Both actionable and druggable genes were identified in 95% (19/20) of the cases. Among them, seven patients (35%) received genotype-matched therapy, which was effective in three patients. Of the three patients, one patient with a PTEN mutation received everolimus, another patient with a TSC2 mutation received everolimus and letrozole, and the patient with a BRIP1 mutation received olaparib. Subsequently, disease control in these three patients lasted for more than half a year. However, all patients relapsed between 9 and 13 months after the initiation of genotype-matched therapy. In this study, the response rate of genotype-matched therapy was 43% (3/7), which may have contributed to improved prognoses. Therefore, genotype-matched therapies may help patients with refractory gynecological cancers achieve better outcomes.


2021 ◽  
Author(s):  
Martina Tarozzi ◽  
Anna Bartoletti-Stella ◽  
Daniele Dall'Olio ◽  
Tommaso Matteuzzi ◽  
Simone Baiardi ◽  
...  

Abstract BACKGROUND: Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and research settings. However, at present, a large fraction of the acquired genetic information is not used since pathogenicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent description of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease risk. We present an approach in which the entire genetic information provided by target sequencing is transformed into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt-Jakob (CJD) disease caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer disease (sAD).RESULTS: Unsupervised methods can identify functionally relevant sources of variation in the data, like haplogroups and polymorphisms that do not follow Hardy-Weinberg equilibrium, such as the NOTCH3 rs11670823 (c.3837+21T>A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the mutational profile of patients. In addition, we found a similar alteration of allele frequencies compared the European population in sporadic patients and in V210I-CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligogenic patterns in different types of dementia. Pathway enrichment and protein-protein interaction network revealed different altered pathways between the two PRNP mutations.CONCLUSIONS: We propose this workflow as a possible approach to gain deeper insights into the genetic information derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and advanced diagnostic applications.


2021 ◽  
Author(s):  
Kiyoka Sawada ◽  
Kentaro Nakayama ◽  
Kohei Nakamura ◽  
Yuki Yoshimura ◽  
Sultana Razia ◽  
...  

Abstract Background: Recent advances in next-generation sequencing and genome medicine has contributed to treatment decisions in patients with cancer. Most advanced gynecological cancers develop resistance to chemotherapy and have a poor prognosis. Therefore, we conducted genomic tests in gynecological tumors to examine the efficacy and clinical feasibility of genotype-matched therapy. Methods: Target sequencing was performed in 20 cases of gynecological cancers (cervical cancer, 6; endometrial cancer, 6; and ovarian cancer, 6).Results: Both actionable and druggable genes were identified in 95% (19/20) of the cases. Among them, seven patients (35%) received genotype-matched therapy, which was effective in three patients. Of the three patients, one patient with a PTEN mutation received everolimus, another patient with a TSC2 mutation received everolimus and letrozole, and the patient with a BRIP1 mutation received olaparib. Subsequently, disease control in these three patients lasted for more than half a year. However, all patients relapsed between 9 and 13 months after the initiation of genotype-matched therapy. In this study, the response rate of genotype-matched therapy was 43% (3/7), which may have contributed to improved prognoses.Conclusions: Therefore, genotype-matched therapies may help patients with refractory gynecological cancers achieve better outcomes.


Sign in / Sign up

Export Citation Format

Share Document