hypertrophic response
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 52)

H-INDEX

49
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jennifer M. Petrosino ◽  
Scott A. Hinger ◽  
Volha A. Golubeva ◽  
Juan M. Barajas ◽  
Lisa E. Dorn ◽  
...  

AbstractSkeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Aya Al Katat ◽  
Juan Zhao ◽  
Angelino Calderone ◽  
Lucie Parent

Intracellular Ca2+ overload secondary to chronic hemodynamic stimuli promotes the recruitment of Ca2+-dependent signaling implicated in cardiomyocyte hypertrophy. The present study tested the hypothesis that sympathetic-mediated hypertrophy of neonatal rat ventricular cardiomyocytes (NRVMs) translated to an increase in calcium influx secondary to the upregulation of CaV1.2 channel subunits. Confocal imaging of norepinephrine (NE)-treated NRVMs revealed a hypertrophic response compared to untreated NRVMs. L-type CaV1.2 peak current density was increased 4-fold following a 24-h stimulation with NE. NE-treated NRVMs exhibited a significant upregulation of CaVα2δ1 and CaVβ3 protein levels without significant changes of CaVα1C and CaVβ2 protein levels. Pre-treatment with the β1-blocker metoprolol failed to inhibit hypertrophy or CaVβ3 upregulation whereas CaVα2δ1 protein levels were significantly reduced. NE promoted the phosphorylation of ERK 1/2, and the response was attenuated by the β1-blocker. U0126 pre-treatment suppressed NE-induced ERK1/2 phosphorylation but failed to attenuate hypertrophy. U0126 inhibition of ERK1/2 phosphorylation prevented NE-mediated upregulation of CaVα2δ1, whereas CaVβ3 protein levels remained elevated. Thus, β1-adrenergic receptor-mediated recruitment of the ERK1/2 plays a seminal role in the upregulation of CaVα2δ1 in NRVMs independent of the concomitant hypertrophic response. However, the upregulation of CaVβ3 protein levels may be directly dependent on the hypertrophic response of NRVMs.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Yuki Katanosaka

The dystrophin–glycoprotein complex (DGC) links the intracellular cytoskeleton to the extracellular basement membrane, thereby providing structural support for the sarcolemma. Many patients with muscular dystrophies, particularly those with defects in cardiomyopathies with chamber dilation and myocardial dysfunction. Heart failure is the major cause of death for muscular dystrophy patients; however, the molecular pathomechanism remains unknown. Here, I show the detailed molecular pathogenesis of muscular dystrophy–associated cardiomyopathy in mice lacking the fukutin gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn elimination markedly reduced the glycosylation of α-dystroglycan and the expression of DGC proteins in sarcolemma at all developmental stages, cardiac dysfunction was observed only in later adulthood, suggesting that the physiological contribution of DGC proteins in the heart increases after 6 mo of age. In addition, Fktn-deficient mice maintain normal cardiac function at young age, suggesting that membrane fragility is not the sole etiology of cardiac dysfunction. Young Fktn-deficient mice did not show a compensative hypertrophic response to hemodynamic stress and quickly developed heart failure with chamber dilation and contractile dysfunction. In these mice, Ca2+-calcineurin signaling was already elevated under physiological conditions, and MEF2-HDAC axes essential for the hypertrophic response were unable to function under stress conditions. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mortality with myocyte contractile dysfunction and disordered Golgi–microtubule networks, which were ameliorated with colchicine treatment. Microarray analysis in control and Fktn-deficient hearts suggest that elimination of Fktn impacts the expression profile of Golgi-related genes, and that the pathological mechanism of cardiac dysfunction induced by Fktn elimination partly overlaps with that of neurodegenerative disease. These data reveal fukutin is crucial for maintaining myocyte physiology to prevent heart failure, and, thus, the results may lead to strategies for intervention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manveen K. Gupta ◽  
Anita Sahu ◽  
Yu Sun ◽  
Maradumane L. Mohan ◽  
Avinash Kumar ◽  
...  

AbstractAlthough microRNA-7 (miRNA-7) is known to regulate proliferation of cancer cells by targeting Epidermal growth factor receptor (EGFR/ERBB) family, less is known about its role in cardiac physiology. Transgenic (Tg) mouse with cardiomyocyte-specific overexpression of miRNA-7 was generated to determine its role in cardiac physiology and pathology. Echocardiography on the miRNA-7 Tg mice showed cardiac dilation instead of age-associated physiological cardiac hypertrophy observed in non-Tg control mice. Subjecting miRNA-7 Tg mice to transverse aortic constriction (TAC) resulted in cardiac dilation associated with increased fibrosis bypassing the adaptive cardiac hypertrophic response to TAC. miRNA-7 expression in cardiomyocytes resulted in significant loss of ERBB2 expression with no changes in ERBB1 (EGFR). Cardiac proteomics in the miRNA-7 Tg mice showed significant reduction in mitochondrial membrane structural proteins compared to NTg reflecting role of miRNA-7 beyond the regulation of EGFR/ERRB in mediating cardiac dilation. Consistently, electron microscopy showed that miRNA-7 Tg hearts had disorganized rounded mitochondria that was associated with mitochondrial dysfunction. These findings show that expression of miRNA-7 in the cardiomyocytes results in cardiac dilation instead of adaptive hypertrophic response during aging or to TAC providing insights on yet to be understood role of miRNA-7 in cardiac function.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinyang Wang ◽  
Kim L. Bennell ◽  
Yuanyuan Wang ◽  
Karine Fortin ◽  
David J. Saxby ◽  
...  

Abstract Background Anterior cruciate ligament reconstruction (ACLR) together with concomitant meniscal injury are risk factors for the development of tibiofemoral (TF) osteoarthritis (OA), but the potential effect on the patellofemoral (PF) joint is unclear. The aim of this study was to: (i) investigate change in patellar cartilage morphology in individuals 2.5 to 4.5 years after ACLR with or without concomitant meniscal pathology and in healthy controls, and (ii) examine the association between baseline patellar cartilage defects and patellar cartilage volume change. Methods Thirty two isolated ACLR participants, 25 ACLR participants with combined meniscal pathology and nine healthy controls underwent knee magnetic resonance imaging (MRI) with 2-year intervals (baseline = 2.5 years post-ACLR). Patellar cartilage volume and cartilage defects were assessed from MRI using validated methods. Results Both ACLR groups showed patellar cartilage volume increased over 2 years (p < 0.05), and isolated ACLR group had greater annual percentage cartilage volume increase compared with controls (mean difference 3.6, 95% confidence interval (CI) 1.0, 6.3%, p = 0.008) and combined ACLR group (mean difference 2.2, 95% CI 0.2, 4.2%, p = 0.028). Patellar cartilage defects regressed in the isolated ACLR group over 2 years (p = 0.02; Z = − 2.33; r = 0.3). Baseline patellar cartilage defect score was positively associated with annual percentage cartilage volume increase (Regression coefficient B = 0.014; 95% CI 0.001, 0.027; p = 0.03) in the pooled ACLR participants. Conclusions Hypertrophic response was evident in the patellar cartilage of ACLR participants with and without meniscal pathology. Surprisingly, the increase in patellar cartilage volume was more pronounced in those with isolated ACLR. Although cartilage defects stabilised in the majority of ACLR participants, the severity of patellar cartilage defects at baseline influenced the magnitude of the cartilage hypertrophic response over the subsequent ~ 2 years.


2021 ◽  
Vol 11 (4) ◽  
pp. 164-184
Author(s):  
Taha Rehmani ◽  
Jana Mlynarova ◽  
Joseph Byers ◽  
Maysoon Salih ◽  
Balwant S. Tuana

Sarcolemmal membrane-associated proteins (SLMAPs) belong to the superfamily of tail-anchored membrane proteins known to regulate diverse biological processes, including protein trafficking and signal transduction. Mutations in SLMAP have been linked to Brugada and defective sodium channel Nav1.5 shuttling. The SLMAP gene is alternatively spliced to generate numerous isoforms, broadly defined as SLMAP1 (~35 kDa), SLMAP2 (~45 kDa) and SLMAP3 (~80–95 kDa), which are highly expressed in the myocardium. The SLMAP3 isoform exhibits ubiquitous expression carrying an FHA domain and is believed to negatively regulate Hippo signaling to dictate cell growth/death and differentiation. Using the αMHC-MerCreMer-flox system to target the SLMAP gene, we specifically deleted the SLMAP3 isoform in postnatal mouse hearts without any changes in the expression of SLMAP1/SLMAP2 isoforms. The in vivo analysis of mice with SLMAP3 cardiac deficiency revealed no significant changes to heart structure or function in young or aged mice without or with isoproterenol-induced stress. SLMAP3-deficient hearts revealed no obvious differences in cardiac size, function or hypertrophic response. Further, the molecular analysis indicated that SLMAP3 loss had a minor impact on sodium channel (Nav1.5) expression without affecting cardiac electrophysiology in postnatal myocardium. Surprisingly, the loss of SLMAP3 did not impact Hippo signaling in postnatal myocardium. We conclude that the FHA domain-containing SLMAP3 isoform has no impact on Hippo signaling or sodium channels in postnatal myocardium, which is able to function and respond normally to stress in its absence. Whether SLMAP1/SMAP2 isoforms can compensate for the loss of SLMAP3 in the affairs of the postnatal heart remains to be determined.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Federica Maria Conedera ◽  
Ana Maria Quintela Pousa ◽  
Nadia Mercader ◽  
Markus Tschopp ◽  
Volker Enzmann

Abstract Background Contrasting with zebrafish, retinal regeneration from Müller cells (MCs) is largely limited in mammals, where they undergo reactive gliosis that consist of a hypertrophic response and ultimately results in vision loss. Transforming growth factor β (TGFβ) is essential for wound healing, including both scar formation and regeneration. However, targeting TGFβ may affect other physiological mechanisms, owing its pleiotropic nature. The regulation of various cellular activities by TGFβ relies on its interaction with other pathways including Notch. Here, we explore the interplay of TGFβ with Notch and how this regulates MC response to injury in zebrafish and mice. Furthermore, we aimed to characterize potential similarities between murine and human MCs during chronic reactive gliosis. Methods Focal damage to photoreceptors was induced with a 532 nm diode laser in TgBAC (gfap:gfap-GFP) zebrafish (ZF) and B6-Tg (Rlbp1-GFP) mice. Transcriptomics, immunofluorescence, and flow cytometry were employed for a comparative analysis of MC response to laser-induced injury between ZF and mouse. The laser-induced injury was paired with pharmacological treatments to inhibit either Notch (DAPT) or TGFβ (Pirfenidone) or TGFβ/Notch interplay (SIS3). To determine if the murine laser-induced injury model translates to the human system, we compared the ensuing MC response to human donors with early retinal degeneration. Results Investigations into injury-induced changes in murine MCs revealed TGFβ/Notch interplay during reactive gliosis. We found that TGFβ1/2 and Notch1/2 interact via Smad3 to reprogram murine MCs towards an epithelial lineage and ultimately to form a glial scar. Similar to what we observed in mice, we confirmed the epithelial phenotype of human Müller cells during gliotic response. Conclusion The study indicates a pivotal role for TGFβ/Notch interplay in tuning MC stemness during injury response and provides novel insights into the remodeling mechanism during retinal degenerative diseases. Graphical abstract


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Carmela Filomena ◽  
Daniel L Yamamoto ◽  
Pierluigi Carullo ◽  
Roman Medvedev ◽  
Andrea Ghisleni ◽  
...  

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.


2021 ◽  
Author(s):  
Ze-Yan Yu ◽  
Hutao Gong ◽  
Scott Kesteven ◽  
Yang Guo ◽  
Jianxin Wu ◽  
...  

Abstract Pressure overload-induced cardiac hypertrophy is a maladaptive response with poor outcomes and limited treatment options. The transient receptor potential melastatin 4 (TRPM4) ion channel is key to activation of a Ca2+-calmodulin kinase II (CaMKII)-dependent hypertrophic signalling pathway after pressure overload, but TRPM4 is neither stretch-activated nor Ca2+-permeable. Here we show that Piezo1, which is both stretch-activated and Ca2+-permeable, is the mechanosensor that transduces increased myocardial forces into the chemical signal that initiates hypertrophic signalling via TRPM4. Cardiomyocyte-specific deletion of Piezo1 in adult mice prevented activation of CaMKII and inhibited the hypertrophic response: residual hypertrophy was associated with calcineurin activation in the absence of its usual inhibition by activated CaMKII. Piezo1 deletion prevented upregulation of the sodium-calcium exchanger and downregulation of the T-type calcium channel after pressure overload. These findings establish Piezo1 as the cardiomyocyte mechanosensor that instigates the maladaptive hypertrophic response to pressure overload, opening an avenue to novel therapies.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Takahiro Katagiri ◽  
Yoichi Sunagawa ◽  
Masafumi Funamoto ◽  
Yasufumi Katanasaka ◽  
Yusuke Miyazaki ◽  
...  

Introduction: Heart failure is the leading cause of death in the world. Cardiomyocyte hypertrophy is observed during the development of heart failure, suggesting that its inhibition is a potential target for the prevention and treatment of heart failure. In this study, we screened a natural compound library using cultured cardiomyocytes and found that Ecklonia stolonifera Okamura extract (ESE) suppressed cardiomyocyte hypertrophy. ESE, a perennial brown alga, has been reported to have various bioactive effects, such as antioxidant and anti-inflammatory activity, but its effect on heart failure is still unclear. Therefore, we investigated whether ESE has an inhibitory effect on cardiomyocyte hypertrophic response and on the progression of heart failure in post-myocardial infarction (MI) rats. Methods and Results: First, primary cultured cardiomyocytes from neonatal rats were treated with ESE and then stimulated with phenylephrine (PE) for 48 hours. ESE (1000 μg/mL) significantly suppressed PE-induced increases in cardiomyocyte surface area, hypertrophic response gene transcription, and acetylation of histone H3K9. An in vitro p300-HAT assay indicated that ESE directly inhibited p300-HAT activity (IC50: 505 μg/mL). Next, one week after the ligation of the left anterior descending artery, rats with moderate MI (left ventricular fractioning shorting (LVFS) <40%) were randomly assigned to three groups: vehicle (saline) (n=9), ESE (0.3 g/kg) (n=10), or ESE (1 g/kg) (n=10). Daily oral administration was repeated for 8 weeks. After treatment, LVFS was significantly higher in the ESE (1 g/kg) group (23.3 ± 0.7%, p<0.05) than in the vehicle group (16.6 ± 1.3%). Next, the hearts were isolated and histological analysis, evaluation of gene transcription, and measurement of histone H3K9 acetylation. were performed. ESE treatment significantly suppressed MI-induced increases both in myocardial cell diameter and in the mRNA levels of hypertrophic response genes. ESE also inhibited MI-induced perivascular fibrosis and the acetylation of histone H3K9. Conclusion: These results suggest that ESE suppresses both hypertrophic responses in cardiomyocytes and the development of heart failure by inhibiting p300-HAT activity. Further studies are needed to clarify the effectiveness of ESE for heart failure therapy.


Sign in / Sign up

Export Citation Format

Share Document