salt distribution
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 35)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Qian Liu ◽  
Yanfeng Liu ◽  
Menggui Jin ◽  
Jingzhe He ◽  
Paul A. “Ty” Ferré

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2602 ◽  
Author(s):  
Chao Xiao ◽  
Meng Li ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Yi Li ◽  
...  

Low water use efficiency and soil salinization are two main factors limiting cotton production in southern Xinjiang. A field experiment was conducted to investigate the effects of brackish water irrigation levels on cotton growth, yield and soil water–salt dynamics in southern Xinjiang, so as to provide a theoretical and experimental basis for the development and utilization of brackish water. There were three irrigation levels: W1 (75 mm + 80%ETc), W2 (150 mm + 80%ETc) and W3 (240 mm + 80%ETc) at the seeding stage (S1), seeding stage + budding stage (S2) and seeding stage + budding stage + flowering stage (S3), with an irrigation amount of 450 mm during spring as the CK (the local reference level) (10 treatments in total). The salt of the local brackish water used was 3 g·L−1. Film-mulched drip irrigation experiments were conducted to observe cotton growth, aboveground dry matter, cotton yield, soil water and salt distribution, as well as other indicators. The results showed that the irrigation applications of S3 can improve the soil moisture and salt distribution of the root zone. The salt accumulation at the harvest stage of W3S3 was reduced by 39.5% and 2.8% compared with W3S1 and W3S2, respectively. More frequent irrigation applications can reduce a soil’s total dissolved solids (TDS), avoid exceeding the salt tolerance threshold of 4.8 g kg−1 and lead to higher aboveground dry matter and cotton yields. W3S3 obtained the highest yield of 5685 kg ha−1, which was increased by 39.59%, 7.85% and 11.25% compared with W3S1, W3S2 and CK, respectively. The higher the irrigation amount, the less water use efficiency (WUE), following the order of S3 > S2 > S1 > CK at various growth stages. W3S1 obtained the lowest WUE of 0.64 kg·m−3. Comprehensively considering the effects of soil moisture retention and salt suppression, cotton growth, yield and water use efficiency, an irrigation amount of 240 mm brackish water at three growth stages, with 80%ETc for irrigation, is recommended for the sustainable production of cotton in southern Xinjiang.


2021 ◽  
Vol 298 ◽  
pp. 123862
Author(s):  
Cristiana Nunes ◽  
Asel Maria Aguilar Sanchez ◽  
Sebastiaan Godts ◽  
Davide Gulotta ◽  
Ioannis Ioannou ◽  
...  

2021 ◽  
Vol 51 (5) ◽  
pp. 1395-1416
Author(s):  
Xiaoyan Wei ◽  
Henk M. Schuttelaars ◽  
Megan E. Williams ◽  
Jennifer M. Brown ◽  
Peter D. Thorne ◽  
...  

AbstractAsymmetric tidal turbulence (ATT) strongly influences estuarine health and functioning. However, its impact on the three-dimensional estuarine dynamics and the feedback of water motion and salinity distribution on ATT remain poorly understood, especially for short estuaries (estuarine length ≪ tidal wavelength). This study systematically investigates the abovementioned interactions in a short estuary for the first time, considering periodically weakly stratified conditions. This is done by developing a three-dimensional semi-analytical model (combining perturbation method with finite element method) that allows a dissection of the contributions of different processes to ATT, estuarine circulation, and salt transport. The generation of ATT is dominated by (i) strain-induced periodic stratification and (ii) asymmetric bottom-shear-generated turbulence, and their contributions to ATT are different both in amplitude and phase. The magnitude of the residual circulation related to ATT and the eddy viscosity–shear covariance (ESCO) is about half of that of the gravitational circulation (GC) and shows a “reversed” pattern as compared to GC. ATT generated by strain-induced periodic stratification contributes to an ESCO circulation with a spatial structure similar to GC. This circulation reduces the longitudinal salinity gradients and thus weakens GC. Contrastingly, the ESCO circulation due to asymmetric bottom-shear-generated turbulence shows patterns opposite to GC and acts to enhance GC. Concerning the salinity dynamics at steady state, GC and tidal pumping are equally important to salt import, whereas ESCO circulation yields a significant seaward salt transport. These findings highlight the importance of identifying the sources of ATT to understand its impact on estuarine circulation and salt distribution.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
А. L. Chikin ◽  
L. G. Chikina ◽  
◽  

Purpose. Numerical study based on the model example is aimed at examining the process of the salt water inflow to the Stary Don sleeve from the Taganrog Bay due to the wind water surge. Methods and Results. Complex mathematical model of the flow and salt distribution in the open riverbed is described. The section of the River Don, consisting of the Stary Don sleeve and a part of the main channel was considered. Salt is delivered through the host reservoir – the Taganrog Bay. The model is described by the system of Saint-Venant equations and the convection-diffusion equation. The problem is solved by the finite-difference methods. The results of the numerically studied influence of the sea surface level in the Taganrog Bay both on the flow nature in the Don Delta area and the degree of salt penetration upstream of the river are obtained. It was numerically established that the flow rate did not significantly affect salt concentration in the Don main channel. Conclusions. The computational experiments showed that the decisive factor in the process of the salt water inflow to the Don Delta from the Taganrog Bay consisted in the sea level significant increase resulting from extreme wind surges; and the preceding runoffs enhanced this effect even greater. The represented model gives an idea of the general trend in the process of the Don Delta possible salinization as a result of the surge phenomena.


2021 ◽  
Vol 37 (2) ◽  
Author(s):  
А. L. Chikin ◽  
L. G. Chikina ◽  
◽  

Purpose. Numerical study based on the model example is aimed at examining the process of the salt water inflow to the Stary Don sleeve from the Taganrog Bay due to the wind water surge. Methods and Results. Complex mathematical model of the flow and salt distribution in the open riverbed is described. The section of the River Don, consisting of the Stary Don sleeve and a part of the main channel was considered. Salt is delivered through the host reservoir – the Taganrog Bay. The model is described by the system of Saint-Venant equations and the convection-diffusion equation. The problem is solved by the finite-difference methods. The results of the numerically studied influence of the sea surface level in the Taganrog Bay both on the flow nature in the Don Delta area and the degree of salt penetration upstream of the river are obtained. It was numerically established that the flow rate did not significantly affect salt concentration in the Don main channel. Conclusions. The computational experiments showed that the decisive factor in the process of the salt water inflow to the Don Delta from the Taganrog Bay consisted in the sea level significant increase resulting from extreme wind surges; and the preceding runoffs enhanced this effect even greater. The represented model gives an idea of the general trend in the process of the Don Delta possible salinization as a result of the surge phenomena


LWT ◽  
2021 ◽  
pp. 111451
Author(s):  
Antonio Roberto Giriboni Monteiro ◽  
Akihiro Nakagawa ◽  
Tatiana Colombo Pimentel ◽  
Isabel Sousa

Author(s):  
Manli Duan ◽  
Guohuan Liu ◽  
Beibei Zhou ◽  
Xiaopeng Chen ◽  
Quanjiu Wang ◽  
...  

2021 ◽  
Author(s):  
Yue Liu ◽  
Chenming Zhang ◽  
Xiaocheng Liu ◽  
Ling Li ◽  
Alexander Scheuermann ◽  
...  

<p>Tidal wetlands are critical intertidal ecosystem which accommodates a large range of flora and fauna species. The intertidal subsurface environment is subjected to continuous groundwater-seawater mixing which results in dynamic solute transport in the aquifer and to the ocean. Salt distribution and transport play a vital role in the wetland ecology and near-shore biogeochemical activities. While many field and simulation studies have been presented to characterize the salt distribution in the intertidal beach aquifer under the influence of tidal inundation, salt distribution in the tidal wetland subsurface system yet requires more investigation. Moreover, the impact of evaporation on porewater salt distribution could be essential in subtropical areas with numerous coastal wetlands as evaporation extracts porewater from the soil surface and leaves salt in the surface and wetland root zone. However, this parameter was commonly ignored by previous studies.</p><p>In this study, field monitoring was carried out to map the groundwater level and spatial salt distribution in a subtropical wetland located in Southeastern Queensland, Australia. Two dimensional, variable-density, saturated-unsaturated groundwater flow and solute transport model was used to examine the pore water flow and salt distribution patterns in a cross-shore section of the field site under the influences of the spring-neap tide and evaporation. Field and simulation results consistently showed that salinity is greatly impacted by evaporation and showed different distributions from the saline seawater intrusion patterns displayed by most of the former studies. </p>


Sign in / Sign up

Export Citation Format

Share Document