cell substrate adhesion
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3485
Author(s):  
Shashi Prakash Singh ◽  
Peter A. Thomason ◽  
Robert H. Insall

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit—but not Scar—is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation—cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


2021 ◽  
Author(s):  
Shashi Prakash Singh ◽  
Peter Thomason ◽  
Robert Insall

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here we report that the Abi subunit - not Scar/WAVE - is phosphorylated in response to extracellular signalling. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar/WAVE complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation - cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar/WAVE patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Cells in which Scar and Abi are both unphosphorylatable can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


2021 ◽  
Author(s):  
Christian M Cammarota ◽  
Nicole S Dawney ◽  
Qingyuan Jia ◽  
Maren M Jung ◽  
Joseph A Glichowski ◽  
...  

Organ surfaces are lined by epithelial monolayers - sheets of cells that are one-cell thick. This architecture underlies tissue function, and its loss is associated with disease, including cancer. Studies of in-plane epithelial cell behaviors show that a developing epithelium behaves as a fluid in respect to the tissue plane, and can therefore readily adapt to varying mechanical influences during morphogenesis. We asked the question of how monolayer architecture is achieved, and whether it demonstrates the same fluid behavior. To address this problem, we cultured MDCK (Madin-Darby Canine Kidney) cell layers at different densities and timepoints and analyzed their architectures using a novel tool, Automated Layer Analysis (ALAn), which we introduce here. Our experimental and theoretical results lead us to propose that epithelial monolayer architecture is governed by a balance of counteracting forces due to cell-cell and cell-substrate adhesion, and that this balance is influenced by cell density. MDCK cells do not undergo obvious rearrangement along the apical-basal axis; instead, cells that do not contact the substrate aggregate on top of the monolayer. Our findings therefore imply that monolayered architecture is under more rigid control than planar tissue shape in epithelia.


2021 ◽  
Author(s):  
Siavash Monfared ◽  
Guruswami Ravichandran ◽  
José E. Andrade ◽  
Amin Doostmohammadi

Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remain largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions, in a monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces in the model reveals that a higher cell-substrate adhesion leads to a lower number of total extrusion events. We find extrusion events to be linked to both half-integer topological defects in the orientation field of the cells and to five-fold disclinations in cellular arrangements. We also show that increasing the relative cell-cell adhesion forces translates into a higher likelihood for an extrusion event to be associated with a five-fold disclination and a weaker correlation with +1/2 topological defects. We unify our findings by accessing mechanical stress fields: an extrusion event acts as a mechanism to relieve localized stress concentration.


2021 ◽  
Author(s):  
Thuan Beng Saw ◽  
Xumei Gao ◽  
Jianan He ◽  
Anh Phuong Le ◽  
Supatra Marsh ◽  
...  

Abstract Studies of electric effects in biological systems, from the historical experiments of Galvani 1 and the ground-breaking work on action potential2 to studies on limb regeneration3 or wound healing4, share the common feature of being concerned with transitory behavior and not addressing the question of homeostasis. Here using a novel microfluidic device, we study how the homeostasis of confluent epithelial tissues is modified when a trans-epithelial electric potential (TEPD) different from the natural one is imposed on an epithelial layer. We show that epithelial fate is dependent on TEPD of few Volts/cm similar to the endogenous one. When the field direction matches the natural one, we can restore a perfect confluence in an epithelial layer turned defective either by E-cadherin knock-out or by weakening cell-substrate adhesion; additionally, the tissue pushes on the substrate with kilo-Pascals stress, inducing active cell response such as death and differentiation. When the field is opposite, homeostasis is destroyed by the perturbation of junctional actin and cell shapes, and the formation of dynamical mounds5, while the tissue pulls with similar strengths. Most of these observations can be quantitatively explained by an electro-hydrodynamic theory involving local electro-osmotic flows. We expect this work to motivate further studies on long time effects of electromechanical pathways with important tissue engineering applications.


2020 ◽  
pp. jim-2020-001616
Author(s):  
Jingrui Huang ◽  
Yingming Xie ◽  
Qiaozhen Peng ◽  
Weinan Wang ◽  
Chenlin Pei ◽  
...  

To investigate the heterogeneity of decidual stromal cells (DSCs) and their functional alterations during delivery, we conducted single-cell RNA sequencing analysis to characterize the transcriptomic profiles of DSCs before and after labor onset. According to their transcriptomic profiles, DSCs (6382 cells) were clustered into five subgroups with different functions. Similar to stromal cells, cells in cluster 1 were involved in cell substrate adhesion. On the other hand, cells in clusters 2 and 3 were enriched in signal transduction-related genes. Labor onset led to significant alterations in many pathways, including the activator protein 1 pathway (all clusters), as well as in the response to lipopolysaccharide (clusters 1–3). The downregulated genes were involved in coagulation, ATP synthesis, and oxygen homeostasis, possibly reflecting the oxygen and energy balance during delivery. Our findings highlight that peripartum DSCs are heterogeneous and play multiple roles in labor.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3667
Author(s):  
Yaelim Lee ◽  
Megan Finch-Edmondson ◽  
Hamizah Cognart ◽  
Bowen Zhu ◽  
Haiwei Song ◽  
...  

YAP and its paralog TAZ are the nuclear effectors of the Hippo tumour-suppressor pathway, and function as transcriptional co-activators to control gene expression in response to mechanical cues. To identify both common and unique transcriptional targets of YAP and TAZ in gastric cancer cells, we carried out RNA-sequencing analysis of overexpressed YAP or TAZ in the corresponding paralogous gene-knockouts (KOs), TAZ KO or YAP KO, respectively. Gene Ontology (GO) analysis of the YAP/TAZ-transcriptional targets revealed activation of genes involved in platelet biology and lipoprotein particle formation as targets that are common for both YAP and TAZ. However, the GO terms for cell-substrate junction were a unique function of YAP. Further, we found that YAP was indispensable for the gastric cancer cells to re-establish cell-substrate junctions on a rigid surface following prolonged culture on a soft substrate. Collectively, our study not only identifies common and unique transcriptional signatures of YAP and TAZ in gastric cancer cells but also reveals a dominant role for YAP over TAZ in the control of cell-substrate adhesion.


Sign in / Sign up

Export Citation Format

Share Document