membrane matrix
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 16)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 878 ◽  
pp. 3-8
Author(s):  
Christian Matthew P. Mabborang ◽  
Joshua Nathaniel B. Padrigo ◽  
Gerald Mari Quiachon ◽  
Persia Ada N. de Yro

Heavy metal adsorption (HMA) is one of the remediation techniques used to remove heavy metals from water/wastewater. Composite membranes with functionalized additives for selective adsorption are being investigated. In this study, Carbon Quantum Dots – Polyacrylonitrile/Polycaprolactone nanocomposite membranes are synthesized by electrospinning which is intended for HMA of Cu2+. The nanofiber mats were characterized using SEM, FTIR, and Contact Angle. Batch adsorption process were performed and to utilize the AAS for kinetic adsorption behavior analysis. SEM micrographs revealed the addition of CQD in PAN and PAN/PCL membrane matrix shifted the fiber size distribution from 50 – 100 nm to 150 – 250 nm indicates the decrease in effective surface area. FTIR analysis exhibited vibrational peaks and binding of distinct functional groups such as amine, nitrile, carboxylic, hydroxyl, and carbonyl for CQD, PAN and PCL, respectively. CQD in aqueous form further increases the hydrophilicity of PAN/PCL membrane matrix which is essential for HMA of Cu2+ ions. The increase of nanofiber mat’s adsorption capacity with respect to contact time obtained a maximum at 63.45 mg/g with a maximum efficiency of adsorption at 90.74%. Kinetic adsorption studies show that the pseudo – first order kinetic model best fits the data for CQD – PAN/PCL nanofiber mat in Cu2+ ions obtaining a correlation value of R2 = 0.9418 and a rate constant k = 0.0172 min1 indicating the adsorption behavior follows the physical adsorption process involving Van der Waals forces and hydrogen bonding between the adsorbent and adsorbate.


2020 ◽  
Vol 40 (10) ◽  
pp. 833-841
Author(s):  
Ahmed E. Abdelhamid ◽  
Ahmed A. El-Sayed ◽  
Ahmed M. Khalil

AbstractComposite-nanofiltration membranes based on polysulfone (PSU) and functionalized graphene oxide (f-GO) were prepared for dye removal from aqueous media. Graphene oxide (GO) was introduced to enhance the performance of these membranes. GO was functionalized using an aminated heterocyclic compound, namely 6-amino-4-(4-nitrophenyl)-3-methyl-4-phenyl-4,7-dihydro-1H-pyrazolo-[3,4-b]pyridine-5carbonitrile. The f-GO was incorporated into the PSU membrane matrix in different weight ratios (0.25, 0.5, 1, 2 and 4 wt %). Characterizing the produced membranes with scanning electron microscope, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR) and X-ray diffraction indicated the well dispersion of f-GO in the membrane matrix. The obtained membranes were applied to remove Congo red and methylene blue, as typical anionic and cationic dyes respectively from water. The modified membranes showed superior efficiency in terms of water flux and dye rejection upon being compared with the control membrane. The composite membranes loaded with f-GO exhibited promising dye removal efficiency for both dyes.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 214
Author(s):  
Lei Yao ◽  
Ziyi Long ◽  
Zhe Chen ◽  
Qisong Cheng ◽  
Yuan Liao ◽  
...  

Polyoxometalates (POMs) has proved its advantage in constructing high-performance nanocomposite membranes such as catalytic membranes, adsorptive membranes, and forward osmosis membranes. However, it is challenging or tedious to characterize its distribution and effect on the membrane structures due to the equipment resolution limitation, discrete nano-scaled structures of POMs, and limited doping amount compared to the polymeric membrane matrix. In this paper, POMs-functionalized polyvinylidene fluoride (PVDF) membranes were fabricated by phase inversion combined with the sol-gel method, and electrochemical impedance spectroscopy (EIS) was utilized to analyze the nanocomposite membrane intrinsic properties. Through adjusting the additives in the sol-forming process, a set of membranes with varied intrinsic properties were developed accordingly. The wetting degree of the membranes related to the hydrophilic nature of the membrane surfaces had a crucial influence on the impedance measurements at the early stage. Through EIS analysis, it was demonstrated that the amination of the membrane matrix through (3-aminopropyl)trimethoxysilane (APTMS) treatment and the immobilization of POMs through electrostatic attraction would not generate new pore structures into the membrane and only alter the membrane surface roughness and composition. To my knowledge, it is the first time that EIS was utilized to characterize the hydrophilicity of the membranes and pore structures of the POMs-modified membranes. Our findings indicate that EIS can provide valuable information for probing the structures of other nano-materials-incorporated membranes.


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 150
Author(s):  
Bushra Khan ◽  
Sajjad Haider ◽  
Rooha Khurram ◽  
Zhan Wang ◽  
Xi Wang

The UF membrane with a narrow and uniform pore size distribution and a low tendency to foul has significant applications in wastewater treatment. A major hindrance in the preparation of the UF membrane with these features is the lack of a scalable and economical membrane fabrication method. Herein, we devise a new strategy to prepare a high-quality polyvinylidene fluoride/polymethyl acrylate/cellulose acetate (PVDF/PMMA/CA) blend UF membrane via a combination of the etching mechanism with the traditional Loeb–Sourirajan (L-S) phase inversion method. Different concentrations of silicon dioxide (SiO2) nanoparticles (NP) in the membrane matrix were etched by using a 0.2 M hydrofluoric acid (HF) solution in a coagulation bath. This strategy provided the membrane with unique features along with a narrow and uniform pore size distribution (0.030 ± 0.005 μm). The etched membrane exhibits an increase of 2.3 times in pure water flux (PWF) and of 6.5 times in permeate flux(PF), with a slight decrease in rejection ratio (93.2% vs. 97%) when compared to than that of the un-etched membrane. Moreover, this membrane displayed outstanding antifouling ability, i.e., a flux recovery ratio (FRR) of 97% for 1000 mg/L bovine serum albumin (BSA) solution, a low irreversible fouling ratio of 0.5%, and highly enhanced hydrophilicity due to the formation of pores/voids throughout the membrane structure. The aforementioned features of the etched membrane indicate that the proposed method of etching SiO2 NP in membrane matrix has a great potential to improve the structure and separation efficiency of a PVDF/PMMA/CA blend membrane.


2020 ◽  
Vol MA2020-01 (38) ◽  
pp. 1604-1604
Author(s):  
Hui Hou ◽  
Jürgen Giffin ◽  
Carsten Korte

2020 ◽  
Vol 7 (3) ◽  
pp. 247-258
Author(s):  
Marley J Dewey ◽  
Eileen M Johnson ◽  
Simona T Slater ◽  
Derek J Milner ◽  
Matthew B Wheeler ◽  
...  

Abstract Defects in craniofacial bones occur congenitally, after high-energy impacts, and during the course of treatment for stroke and cancer. These injuries are difficult to heal due to the overwhelming size of the injury area and the inflammatory environment surrounding the injury. Significant inflammatory response after injury may greatly inhibit regenerative healing. We have developed mineralized collagen scaffolds that can induce osteogenic differentiation and matrix biosynthesis in the absence of osteogenic media or supplemental proteins. The amniotic membrane is derived from placentas and has been recently investigated as an extracellular matrix to prevent chronic inflammation. Herein, we hypothesized that a mineralized collagen–amnion composite scaffold could increase osteogenic activity in the presence of inflammatory cytokines. We report mechanical properties of a mineralized collagen–amnion scaffold and investigated osteogenic differentiation and mineral deposition of porcine adipose-derived stem cells within these scaffolds as a function of inflammatory challenge. Incorporation of amniotic membrane matrix promotes osteogenesis similarly to un-modified mineralized collagen scaffolds, and increases in mineralized collagen–amnion scaffolds under inflammatory challenge. Together, these findings suggest that a mineralized collagen–amnion scaffold may provide a beneficial environment to aid craniomaxillofacial bone repair, especially in the course of defects presenting significant inflammatory complications.


2020 ◽  
Author(s):  
S N Kostarev ◽  
N A Tatarnikova ◽  
O V Kochetova ◽  
T G Sereda

Abstract A particular problem at the beginning of the second millennium is the epidemic caused by coronaviruses. In 2002-2003, new strains of viruses appeared – SARS-CoV SARS, in 2012, MERS-CoV. In 2019-2020, the epidemic caused by the coronavirus strain 2019-nCoV, which belong to the Beta-CoV group, is a threat. Different types of coronaviruses infect humans, cats, birds, dogs, cattle, pigs and hares, bats, camels and other animals. Coronaviruses have a single-stranded RNA genome, which encodes 4–5 structural proteins, including proteins of the outer membrane, matrix and small membrane. The complete 2019-nCoV genome is stored online at GenBank: MN908947.3. Coronaviruses have some unique features in RNA transcription. The RNA minus chain serves as a matrix for the synthesis of both new genomic and subgenomic RNAs. To develop a model of human resistance to the disease caused by the coronavirus family, elements, connections and ways of protecting the Human-Virus-Environment system were identified. The destructive functions of sixteen non-structural and structural proteins of the strain 2019-nCoV are considered. Deterministic and statistical models of the development of the danger of infection of the cells have been developed. A parameterized system for protecting a person from coronavirus damage has been developed.


Sign in / Sign up

Export Citation Format

Share Document