internuclear distances
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 15)

H-INDEX

35
(FIVE YEARS 2)

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Artem A. Kotov ◽  
Dmitry A. Glazov ◽  
Vladimir M. Shabaev ◽  
Günter Plunien

The generalized dual-kinetic-balance approach for axially symmetric systems is employed to solve the two-center Dirac problem. The spectra of one-electron homonuclear quasimolecules are calculated and compared with the previous calculations. The analysis of the monopole approximation with two different choices of the origin is performed. Special attention is paid to the lead and xenon dimers, Pb82+–Pb82+–e− and Xe54+–Xe54+–e−, where the energies of the ground and several excited σ-states are presented in the wide range of internuclear distances. The developed method provides the quasicomplete finite basis set and allows for the construction of perturbation theory, including within the bound-state QED.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3567
Author(s):  
Mathias Percipalle ◽  
Yamanappa Hunashal ◽  
Jan Steyaert ◽  
Federico Fogolari ◽  
Gennaro Esposito

Background: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of β2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. Methods: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. Results: The solution structure of isolated Nb23 nanobody was determined. Conclusions: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.


Author(s):  
Artem A. Kotov ◽  
Dmitry A. Glazov ◽  
Vladimir Shabaev ◽  
Günter Plunien

The generalized dual-kinetic-balance approach for axially symmetric systems is employed to solve the two-center Dirac problem. The spectra of one-electron homonuclear quasimolecules are calculated and compared with the previous calculations. The analysis of the monopole approximation with two different choices of the origin is performed. Special attention is paid to the lead and xenon dimers, Pb82+–Pb82+–e− and Xe54+–Xe54+–e−, where the energies of the ground and several excited σ-states are presented in the wide range of internuclear distances. The developed method provides the quasicomplete finite basis set and allows for construction of the perturbation theory, including within the bound-state QED.


2021 ◽  
Vol 140 (3) ◽  
Author(s):  
Katarzyna Jakubowska ◽  
Magdalena Pecul

AbstractThe potential energy curves and the NMR properties: nuclear spin–spin coupling constants and nuclear shielding constants have been calculated for Zn2, Cd2 and Hg2 dimers using density functional theory. The calculations have been carried out using the relativistic four-component Dirac–Coulomb Hamiltonian, and, in the case of energy curves, also relativistic effective core potentials. In case of NMR parameters, the relativistic effects turned out to be critically important even for the lightest dimer, Zn2. The importance of the spin–orbit coupling depends on the internuclear distance: these effects tend to be significant for short internuclear distances.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aaron D. Kaplan ◽  
Stewart J. Clark ◽  
Kieron Burke ◽  
John P. Perdew

AbstractClassical turning surfaces of Kohn–Sham potentials separate classically allowed regions (CARs) from classically forbidden regions (CFRs). They are useful for understanding many chemical properties of molecules but need not exist in solids, where the density never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many semiconductors have no CFR at equilibrium, a key finding for density functional construction. Nonetheless, a strong correlation with insulating behavior can still be inferred. Moreover, equilibrium bond lengths for all cases can be estimated from the bond type and the sum of the classical turning radii of the free atoms or ions.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hemant K. Sharma ◽  
Alejandro J. Metta-Magaña ◽  
Laura I. Saucedo ◽  
Marcela López-Cardoso ◽  
Keith H. Pannell

Abstract The tetrahedral geometry of organolead(IV) compounds can be readily transformed by using an organic ligand containing a dangling-arm oxygen functionality. The acidity of the Pb center results in so-called secondary bonding between O and Pb thereby pushing the geometry at Pb toward a trigonal bipyramidal (tbp) structure. Replacing a phenyl group by a chlorine atom dramatically enhances this phenomenon. Thus for (o-methoxybenzyl) triphenyllead (4), and (o-methoxybenzyl)diphenyllead chloride (5), the Pb–O internuclear distances are 3.362(4) and 2.845(3) Å, respectively; 83% (4) and 70% (5) of the sum of the van der Waals Pb and O radii. Within the group 14 element congeners the structural analysis of the (o-methoxybenzyl)triphenylE compounds, E = Si, Ge, Sn, and now Pb, demonstrates the relative acidities of E are Si < Ge < Sn < Pb.


2020 ◽  
Vol 76 (8) ◽  
pp. 1336-1344
Author(s):  
Amelia M. Wheaton ◽  
Ilia A. Guzei ◽  
John F. Berry

Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κN)(6-sulfanylidenepiperidin-2-one-κS)copper(I)], [Cu2I2(CH3CN)2(C5H7NOS)2] (I), bis(acetonitrile-κN)tetra-μ3-iodido-bis(6-sulfanylidenepiperidin-2-one-κS)-tetrahedro-tetracopper(I), [Cu4I4(CH3CN)4(C5H7NOS)4] (II), catena-poly[[(μ-6-sulfanylidenepiperidin-2-one-κ2 O:S)copper(I)]-μ3-iodido], [CuI(C5H7NOS)] n (III), poly[[(piperidine-2,6-dithione-κS)copper(I)]-μ3-iodido], [CuI(C5H7NS2)] n (IV), and poly[[(μ-isoindoline-1,3-dithione-κ2 S:S)copper(I)]-μ3-iodido], [CuI(C8H5NS2)] n (V). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III, IV, and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu3I3] structure that is not supported by bridging ligands. Structures I, II, and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ2 and μ3-I− atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV, there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules.


2020 ◽  
Vol 86 (2) ◽  
Author(s):  
V. A. Terashkevich ◽  
V. V. Meshkov ◽  
E. A. Pazyuk ◽  
A. V. Stolyarov

The classical collision cross-sections of a proton with an argon atom as well as the thermal transport coefficients and rate constant of the colliding $\text{H}^{+}-\text{Ar}$ system are evaluated at the kinetic temperature $T\in [100,10\,000]~(\text{K})$ by means of the asymptotically correct analytical potential constructed for the ground $X^{1}\unicode[STIX]{x1D6F4}^{+}$ state of the ArH+ cation from the highly accurate ab initio data available in the entire range of internuclear distances (Terashkevich et al., J. Quant. Spectrosc. Radiat. Transfer, vol. 234, 2019, pp. 139–146). The results can be useful to estimate thermodynamic, transport and kinetic properties of the Ar/H2 plasma in a wide temperature range.


Sign in / Sign up

Export Citation Format

Share Document