glomerular endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 83)

H-INDEX

33
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Feng Pan ◽  
Ying Lu

Abstract Backgrounds: Microangiopathy is the most basic pathological manifestation of lupus nephritis (LN), and glomerular endothelial cells (GECs) injury is an important pathological mechanism. LN patients with microangiopathy are prone to steroid resistance (SR). Our previous studies confirmed that Panax notoginseng saponins (PNS) could reverse SR by downregulating the expression of P-gp in SR lymphocytes of LN mice (SLCsL/S). However, the mechanism of how circulating lymphocytes transmit SR information to GECs and thus affect the efficacy of kidney treatment is not clear. Recent studies have found that exosomes (exos) are an important carrier for intercellular bioactive substance communication. The aim of the study is to investigate whether exosomes derived from SLCsL/S mediate SR in GECs and PNS intervention.Methods: Exosomes isolated from SLCsL/S were characterized, and in vitro cell coculture was further conducted to investigate the effect of SLCsL/S-derived exosomes in the SR of GECs and PNS intervention. Sequencing was used to define the exosomal miRNA expression profiling of SR GECs. Moreover, the in vivo experiments were performed through the injection of exosomes extracted from SLCsL/S into the tail vein of mice.Results: In this study, we showed that exosomes derived from SLCsL/S could transmit SR information to GECs and lead to the aggravation of inflammatory injury through conferring P-gp, which were negated by a P-gp inhibitor. Further, we identified higher levels of exosomal miR-125b-5p from SR GECs were associated with SR in LN and could serve as biomarker for the risk of developing SR. PNS could reverse the SR of GECs and alleviate inflammatory injury by suppressing exosomal P-gp levels from lymphocytes to GECs in vitro and in vivo.Conclusions: Our findings suggest that exosomal transfer of SLCsL/S derived P-gp confer SR to GECs, and PNS can target exosome communication to reverse SR in LN, which provides new ideas and a scientific basis for improving the clinical efficacy of traditional Chinese medicine in the treatment of refractory LN.


2021 ◽  
Vol 32 (12) ◽  
pp. 3231-3251
Author(s):  
Baptiste Lamarthée ◽  
Carole Burger ◽  
Charlotte Leclaire ◽  
Emilie Lebraud ◽  
Aniela Zablocki ◽  
...  

BackgroundAfter kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs).MethodsW e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II–deficient glomerular endothelial cells (CiGEnCΔHLA) that had been previously generated through CRISPR/Cas9-induced B2M and CIITA gene disruption. Flow cytometry assessed the reactivity to non-HLA antigens of pretransplantation serum samples from 389 consecutive KTRs. The intensity of the signal observed with the NHADIA was associated with post-transplant graft histology assessed in 951 adequate biopsy specimens.ResultsW e sequentially applied CRISPR/Cas9 to delete the B2M and CIITA genes to obtain a CiGEnCΔHLA clone. CiGEnCΔHLA cells remained indistinguishable from the parental cell line, CiGEnC, in terms of morphology and phenotype. Previous transplantation was the main determinant of the pretransplantation NHADIA result (P<0.001). Stratification of 3-month allograft biopsy specimens (n=298) according to pretransplantation NHADIA tertiles demonstrated that higher levels of non-HLA Abs positively correlated with increased glomerulitis (P=0.002), microvascular inflammation (P=0.003), and ABMRh (P=0.03). A pretransplantation NHADIA threshold of 1.87 strongly discriminated the KTRs with the highest risk of ABMRh (P=0.005, log-rank test). A multivariate Cox model confirmed that NHADIA status and HLA-DSAs were independent, yet synergistic, predictors of ABMRh.ConclusionThe NHADIA identifies non-HLA Abs and strongly predicts graft endothelial injury independent of HLA-DSAs.


Author(s):  
David Antonio Rosso ◽  
Micaela Rosato ◽  
Fernando Daniel Gómez ◽  
Romina Soledad Álvarez ◽  
Carolina Maiumi Shiromizu ◽  
...  

The hemolytic uremic syndrome associated with diarrhea, a consequence of Shiga toxin (Stx)-producing Escherichia coli infection, is a common cause of pediatric acute renal failure in Argentina. Stx type 2a (Stx2a) causes direct damage to renal cells and induces local inflammatory responses that involve secretion of inflammatory mediators and the recruitment of innate immune cells. γδ T cells constitute a subset of T lymphocytes, which act as early sensors of cellular stress and infection. They can exert cytotoxicity against infected and transformed cells, and produce cytokines and chemokines. In this study, we investigated the activation of human peripheral γδ T cells in response to the incubation with Stx2a-stimulated human glomerular endothelial cells (HGEC) or their conditioned medium, by analyzing in γδ T lymphocytes, the expression of CD69, CD107a, and perforin, and the production of TNF-α and IFN-γ. In addition, we evaluated by confocal microscopy the contact between γδ T cells and HGEC. This analysis showed an augmentation in cellular interactions in the presence of Stx2a-stimulated HGEC compared to untreated HGEC. Furthermore, we observed an increase in cytokine production and CD107a expression, together with a decrease in intracellular perforin when γδ T cells were incubated with Stx2a-treated HGEC or their conditioned medium. Interestingly, the blocking of TNF-α by Etanercept reversed the changes in the parameters measured in γδ T cells incubated with Stx2a-treated HGEC supernatants. Altogether, our results suggest that soluble factors released by Stx2a-stimulated HGEC modulate the activation of γδ T cells, being TNF-α a key player during this process.


2021 ◽  
Author(s):  
Xia Wang ◽  
Yinhua Wang ◽  
Guo Zhou ◽  
Yi Li ◽  
Huanhuan Huo ◽  
...  

Abstract Background Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of critical patients and is associated with high morbidity and mortality. The glomerular endothelial cell injury is the main characteristics during S-AKI. Ca2+ influx is a key step in the establishment of endothelial injury. Transient receptor vanilloid subtype 4 (TRPV4) ion channels are permeable to Ca2+ and are widely expressed in endothelial cells. However, the role of TRPV4 on glomerular endothelial inflammation in S-AKI has remained elusive. Methods Mouse glomerular endothelial cells (MRGEC) were used to test the molecular mechanism of TRPV4 on LPS-induced glomerular endothelial inflammation. The cecal-ligation-and-puncture (CLP) model was established by ligation of cecum with 4-0 suture and punctured with a 21-gauge needle. Then 0.2mL faeces was extruded from the puncture site to trigger peritoneal inflammation. Results In the present study, we found that blocking TRPV4 diminishes LPS-induced cytosolic Ca2+-elevations, which are essential for glomerular endothelial inflammation and barrier function. Furthermore, TRPV4 regulated LPS-induced phosphorylation and translocation of NF-κB and IRF-3 in mouse glomerular endothelial cells (MRGEC). Clamping intracellular Ca2+ mimics the LPS-induce response seen in the absence of TRPV4. In vivo, pharmacological blockade or knock down of TRPV4 reduced the inflammatory response of glomerular endothelial cells, inhibited translocation of NF-κB and IRF-3, increased survival rate and improved renal function in CLP-induced sepsis but without altering renal cortical blood perfusion. Conclusions Taken together, these results suggested that inhibition of TRPV4 ameliorates glomerular endothelial inflammation, kidney dysfunction, and increased mortality via mediating Ca2+ overload and NF-κB/IRF-3 activation. These discoveries may provide novel pharmacological strategies for the treatment of glomerular endothelial dysfunction and kidney injury during endotoxemia, sepsis, and other inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sayo Ueda ◽  
Tatsuya Tominaga ◽  
Arisa Ochi ◽  
Akiko Sakurai ◽  
Kenji Nishimura ◽  
...  

Abstractp16 inhibits cyclin-dependent kinases and regulates senescence-mediated arrest as well as p21. Nuclear p16 promotes G1 cell cycle arrest and cellular senescence. In various glomerular diseases, nuclear p16 expression is associated with disease progression. Therefore, the location of p16 is important. However, the mechanism of p16 trafficking between the nucleus and cytoplasm is yet to be fully investigated. TGF-β1, a major cytokine involved in the development of kidney diseases, can upregulate p21 expression. However, the relationship between TGF-β1 and p16 is poorly understood. Here, we report the role of podocyte TGF-β1 in regulating the p16 behavior in glomerular endothelial cells. We analyzed podocyte-specific TGF-β1 overexpression mice. Although p16 was found in the nuclei of glomerular endothelial cells and led to endothelial cellular senescence, the expression of p16 did not increase in glomeruli. In cultured endothelial cells, TGF-β1 induced nuclear translocation of p16 without increasing its expression. Among human glomerular diseases, p16 was detected in the nuclei of glomerular endothelial cells. In summary, we demonstrated the novel role of podocyte TGF-β1 in managing p16 behavior and cellular senescence in glomeruli, which has clinical relevance for the progression of human glomerular diseases.


2021 ◽  
Author(s):  
Kaiying He ◽  
Zhan Chen ◽  
Jing Zhao ◽  
Yang He ◽  
Rongrong Deng ◽  
...  

Abstract Objective: To investigate the role of microRNA-155-5p (miR-155-5p) on apoptosis and inflammatory response in human glomerular endothelial cells (HRGEC) cultured with high glucose.Methods: The primary human glomerular endothelial cells (HRGEC) were studied, QPCR, WB , IF were used to detect cell morphology, target gene ETS-1 (ETS-1), downstream factors VCAM-1 and MCP-1, and apoptosis of cells in each group after high glucose stimulation and transfection with miR-155 overexpression or inhibitor.Results:1.The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose stimulation.2.The overexpression of miR-155 in HRGEC cells under high glucose stimulation decreased the expression of ETS-1, while the expression of ETS-1 increased when miR-155 was inhibited. These results suggest that miR-155 may be involved in endothelial cell injury by negatively regulating the expression of ETS-1.3.HRGEC cells were transfected with miR-155 mimic and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Manna Li ◽  
Le Deng ◽  
Gaosi Xu

Abstract Background N6-Methyladenosine (m6A) modification has been implicated in many bioprocesses. However, its functions in diabetic nephropathy (DN) have not been determined. Here, we investigated the role of METTL14, a key component of the m6A methyltransferase complex, in DN. Methods The expression of METTL14 was detected in DN patients and human renal glomerular endothelial cells (HRGECs). In vitro and in vivo experiments were performed to explore the functions of METTL14 on high glocse-induced HRGECs and renal injury of DN mice. We also investigated whether METTL14 works by regulating α-klotho expression through m6A modification. Results METTL14 were highly expressed in kidneys of DN patients and high glocse-induced HRGECs both at the mRNA and protein level. Overexpression of METTL14 increased ROS, TNF-α and IL-6 levels and apoptosis in HRGECs. Conversely, METTL14 silence decreased the levels of ROS, TNF-α and IL-6 and cell apoptosis. We confirmed that METTL14 down-regulated α-klotho expression in an m6A-dependent manner. In addition, we also found that METTL14 aggravated renal injury and inflammation of db/db mice, which could partially rescued by α-klotho. Conclusion Our data revealed that METTL14 plays a vital role in high glucose-induced glomerular endothelial cells and diabetic nephropathy through m6A modification of α-klotho.


Sign in / Sign up

Export Citation Format

Share Document