generation number
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Marilyne Bélanger-Bouliga ◽  
Brandon Andrade-Gagnon ◽  
Diep Thi Hong Nguyen ◽  
Nazemi Ali

Tetraphenylethylene-functionalized amphiphilic Janus dendrimers of up to third generation are synthesized. Their self-assembly has been studied under kinetic and thermodynamic control. By varying the dendrimer generation number and the self-assembly...


2021 ◽  
Vol 6 (11 (114)) ◽  
pp. 52-59
Author(s):  
Ruslana Kosiv

When fermenting beer, in addition to the formation of basic, secondary, and by-products, which largely determine the taste and aroma of the beverage, yeast is accumulated. Such yeasts can be reused in subsequent serial repitching, which allows cost savings compared to yeast cultivated for each fermentation. This paper investigates the influence of yeast generation on the progress of the wort fermentation process and the quality of beer obtained, specifically in high gravity brewing. It was established that the increase in the number of yeast generation in the range from the first to the fourth generation causes a slight acceleration of the fermentation process of high-gravity wort, while at higher values of the fermentation generation number it slows down. Yeasts secreted after six or four serial wort fermentations with a gravity of 15 °P/18 °P, respectively, have a good physiological state and can be reused. The yeast generation number does not significantly affect ethanol content and sensory beer quality indicators. However, the use of yeast of the seventh and eighth generation causes a slight increase in the pH and color of high gravity beer, the appearance in the aroma of noticeable extraneous shades ‒ yeast tone, tone of young beer. As wort gravity increases, the number of yeast re-use cycles decreases, which is a consequence of the influence of various stress factors, specifically high osmotic pressure, and increased ethanol levels. Therefore, for the fermentation of wort with a gravity of 15 °P, it is recommended to use yeast up to five generations, for 18 °P wort ‒ to four generations. To obtain beer with appropriate physicochemical parameters and high sensory evaluation in high gravity brewing technology, it is advisable to ferment wort with a gravity of 15 °P with yeast for up to five generations.


2021 ◽  
Author(s):  
M R Acharya ◽  
P Mishra ◽  
Satyananda Panda

Abstract This paper analyses the augmentation entropy generation number for a viscous nanofluid flow over a non-isothermal wedge including the effects of non-linear radiation and activation energy. We discuss the influence of thermodynamically important parameters during the study, namely, the Bejan number, entropy generation number, and the augmentation entropy generation number. The mathematical formulation for thermal conductivity and viscosity of nanofluid for Al2O3 − EG mixture has been considered. The results were numerically computed using implicit Keller-Box method and depicted graphically. The important result is the change in augmentation entropy generation number with Reynolds number. We observed that adding nanoparticles (volume fraction) tend to enhance augmentation entropy generation number for Al2O3 − EG nanofluid. Further, the investigation on the thermodynamic performance of non-isothermal nanofluid flow over a wedge reveals that adding nanoparticles to the base fluid is effective only when the contribution of heat transfer irreversibility is more than fluid friction irreversibility. This work also discusses the physical interpretation of heat transfer irreversibility and pressure drop irreversibility. This dependency includes Reynolds number and volume fraction parameter. Other than these, the research looked at a variety of physical characteristics associated with the flow of fluid, heat and mass transfer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamar E. Crum ◽  
Robert D. Schnabel ◽  
Jared E. Decker ◽  
Jeremy F. Taylor

Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.


2021 ◽  
Vol 14 (3) ◽  
pp. 6-17
Author(s):  
V. S. Repin

The article describes a model and method for calculating beta-exposure doses to secretory and basal cells of the tracheobronchial part of the respiratory tract when a point source of 1 Bq activity moves along the inner surface of respiratory formations. The calculations, that used for proposed model, were performed by using a 90Y point source as an example. The dose calculation model takes into account the speed o f movement of the radiation source in each respiratory formation, the size of the respiratory formations, and the depth of the secretory and basal cells. The dose calculation is based on  the dose rate attenuation functions published by W. G. Cross et al.  (DOI: 10.1097/00004032-199208000-00002). The calculations were performed for a cylindrical model of a respiratory formation. Two kinds of cells were considered for the dose estimation: cells irradiated without beta-particle exit into bronchial lumen (type 1 cells) and cells irradiated due to beta-par­ticle exit into bronchial lumen (type 2 cells). The results of calculations showed, that as far as the generation number increasing, the average irradiation doses of the type 1 cells are 10 or more times greater than those of the type 2 cells. With increasing generation number in the tracheobronchial tree, doses per cells increase by several orders of magnitude. The highest doses are formed in bronchioles of generations 9-15, reaching units and tens of mGy. In spite of the fact that the number of generation increases, the total number of irradiated cells decreases, the collective doses of irradiated cells (sum of doses to all cells of the respiratory formation) in the last generations are 30-50 times higher than the doses of the first generations. Thus, in case of a single point source, there is a significant (by many orders of magnitude) scatter of doses to individual cells in indi­vidual respiratory formation, as well as significant differences in average doses of trachea, individual bronchi and bronchioles.


2021 ◽  
Author(s):  
Chittarajan NAYAK ◽  
Shuvendu Jena ◽  
Satyam Rout ◽  
Bhuvneshwer Suthar ◽  
Dinesh V. Udupa

Abstract Here we would like to discuss the light transmission modulation by the one-dimensional polymeric quasi-multilayer which is formed according to substitutional generalized Octonacci with PMMA and PS as the constituent materials. In particular, we will present some theoretical findings using the well-known transfer matrix method. PBG inter-band spacing and depth can be managed by choosing the appropriate generation number. The number of PBGs is the same while increasing in the generation number and are shifted symmetrically towards the designed frequency. It also reveals the aroused forbidden frequency band can be manipulated by changing the applied hydrostatic pressure and the thickness of the constituent polymeric materials. The increase in pressure shows a blue shift in the PBGs while the increase in thickness of the polymeric material provides a redshift to PBGs. The proposed structure could be another possible system for optical device design specially multi-band tunable optical reflectors.


Author(s):  
K. Bala Subrahmanyam ◽  
Aparesh Datta ◽  
Pritam Das

This numerical study investigates the simultaneous application of axial wall conduction effect and entropy generation minimization as two principles to identify heat transfer performance in a microchannel heat sink with fan cavity and ribs. In this conjugate analysis, three different materials for a microchannel heat sink considered are silicon, aluminium, and copper. In addition to the fan cavity (F), effects of different rib configurations arranged symmetrically inside the fan cavity, that is, backward triangle rib (FB), rectangular rib (FR), forward triangle rib (FF), and diamond rib (FD) with Reynolds numbers ranging from 136 to 588 are studied. The comparative study between silicon and copper in terms of local wall and bulk fluid temperatures, increment in solid wall to fluid thermal conductivity ratio within the range (247.07 <  ksf < 669.44), local Nusselt number (Nu x), axial conduction number (M), and entropy generation number ( Ns, a) were furnished and examined. Structural optimization is performed on diamond rib configuration geometrical parameters to observe entropy generation number and wall conduction effects trend as thermal performance is greatly improved to 2.49, at the lowest Ns, a to 0.31 at Re 391.47, with copper in the back to back cavities case. However based on the numerical results, comparative importance of axial wall conduction effect consideration in the present design of microsink, silicon is showing best results in overcoming at Re 588.4, consistently in all optimization cases.


Author(s):  
F Nejati Barzoki ◽  
M Khoshvaght-Aliabadi ◽  
GA Sheikhzadeh ◽  
AA Abbasian Arani ◽  
A Feizabadi

The complexity caused by an enhanced technique may significantly enhance the heat transfer along with a penalty in the pressure drop. Thus, it is needed to assess the counteracting effects between the enhanced heat transfer and the augmented pressure drop in practical applications. In order to comprehensively evaluate the hydrothermal performance of the chevron-type plate-fin (CTPF) equipped with ribs and holes, this study focuses on the relationship between hydraulic and thermal characteristics. Firstly, the relationship between the Colburn factor and the friction factor is presented, then two performance indexes are applied using these factors to evaluate the use of ribs and holes in the CTPIt F is found that the simultaneous use of ribs and holes shows better overall performances as compared with the use of ribs or holes individually. At the same geometrical parameters, the highest values of 1.52 and 1.07 are recorded for these performance indexes. In order to further improve the overall performance of the CTPF, the effects of geometrical parameters are also investigated. With the decrease of corrugation amplitude ( a) and the increase of corrugation length ( l), rib height ( h), and rib thickness ( t), the CTPF performs better overall performances. And, for the models with different levels of hole width ( w), the better performance is seen when this parameter is at the middle level. However, in the studied models, the best overall hydrothermal performance is detected for the model with a = 2.5 mm, l = 60 mm, h = 2.5 mm, t = 10 mm, and w = 10 mm, and highest performance indexes of 2.52 and 1.15 are reported for this model. Likewise, an entropy generation analysis is carried out, and the obtained results are discussed based on the Bejan number and entropy generation number. The results show that the increase of Reynolds number can lead to decrease of Bejan number and to increase of entropy generation number. For Reynolds number ranging from 4000 to 10000, the best model, which is described above, shows 17% decrease in the entropy generation number comparing with the reference model. Finally, two correlations are developed to predict the Bejan number and entropy generation number of the current study.


2021 ◽  
Author(s):  
Sina Sadighi ◽  
Hossein Afshar ◽  
Mohsen Jabbari ◽  
Hossein Ahmadi danesh ashtiani

Abstract This perusal attempts to model and interpret the entropy generation analysis and the flow field of 2-D, steady, viscous, incompressible and laminar boundary layer and forced convection heat transport of micropolar ferrofluid past a stretching sheet including suction and normal magnetic field effects. The porous sheet’s velocity and temperature are presumed to change linearly. Exact explicit solutions of the velocity, angular velocity and temperature distributions have been derived. The impacts of physical parameters on the local skin friction coefficient, the local Nusselt number, the entropy generation number further the velocities and temperature distributions are analyzed by tables and graphs. The angular velocity has more value than velocity for the least value of the magnetic and material parameters. The entropy generation number has a direct relation with material parameter and Brinkman either Reynolds numbers. Moreover, an inverse relation with the Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document