fermentation product
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 73)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 120 ◽  
pp. 56-66
Author(s):  
Mingxu Xie ◽  
Yadong Xie ◽  
Yu Li ◽  
Wei Zhou ◽  
Zhen Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 109
Author(s):  
Jui-Yi Hsu ◽  
Ming-Hsuan Chen ◽  
Yu-Shen Lai ◽  
Su-Der Chen

Solid-state fermentation may produce therapeutic compounds with higher biomass or better product characteristics than those generated by submerged fermentation. The objectives of this study were to analyze the antioxidant activities and biosafety of products obtained by white truffle (Tuber magnatum) solid-state fermentation in media with different ratios of soybean and red adlay. High levels of antioxidant components and high antioxidant activities such as DPPH radical scavenging, ferrous ion chelation, and reducing power were measured in 20 mg/mL water and ethanol extracts of the white truffle fermentation products. When the solid-state fermentation medium contained soybean and red adlay in a 1:3 ratio (S1A3), the fermentation product had more uniform antioxidant compositions and activities by principal component analysis (PCA). In addition, a 200 ppm water extract of the mycelial fermentation product was able to protect zebrafish embryos from oxidative stress induced by 5 mM hydrogen peroxide. Sprague–Dawley rats were fed the mycelial fermentation product for 90 consecutive days, revealing a no-observed-adverse-effect level (NOAEL) of 3000 mg/kg BW/day. Therefore, mycelial products obtained by white truffle solid-state fermentation can be used instead of expensive fruiting bodies as a good source of antioxidant ingredients.


mSphere ◽  
2021 ◽  
Author(s):  
Byron J. Smith ◽  
Richard A. Miller ◽  
Thomas M. Schmidt

The drug acarbose is used to treat diabetes by preventing the breakdown of starch in the small intestine, resulting in dramatic changes in the abundance of some members of the gut microbiome and its fermentation products. In mice, several of the bacteria that respond most positively are classified in the family Muribaculaceae , members of which produce propionate as a primary fermentation product.


Author(s):  
Erin Deters ◽  
Stephanie L. Hansen

Steers supplemented Diamond V NaturSafe, a yeast fermentation product, at the manufacturer’s current recommended dose for receiving cattle (12 g/steer/d) during a 19-d preconditioning period exhibited greater antioxidant (glutathione) capacity prior to a 19-h transit event. Regardless of treatment, activity of the antioxidant enzyme Mn-superoxide dismutase was increased post-transit, suggesting more antioxidants may be needed to combat transit-induced stress. Supplementing NaturSafe at 12 g/steer/d during both preconditioning and receiving also improved feedlot performance early in the receiving period (d 0 to 30). These data suggest increasing antioxidant status may be an effective strategy to help cattle prepare for and recover from a stressful event, such as long-distance transit.


2021 ◽  
Author(s):  
Pablo Schulman ◽  
Thales H. C. Ribeiro ◽  
Mohamed Fokar ◽  
Antonio Chalfun-Junior ◽  
Richard D Lally ◽  
...  

With the progressive loss of fungicide efficacy against Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), alternative methods to protect soybean crops are needed. Resistance induction is a low impact alternative and/or supplement to fungicide applications that fortifies innate plant defenses against pathogens. Here, we show that a microbial fermentation product (MFP) induces plant defenses in soybean and transcriptional induction is enhanced with the introduction of ASR. MFP-treated plants exhibited 1,011 and 1,877 differentially expressed genes (DEGs) 12 and 60 hours after treatment, respectively, compared to water controls. MFP plants exposed to the pathogen 48 h after application and sampled 12 hours later (for a total of 60 h) had 2,401 DEGs compared to control. The plant defense genes PR1, PR2, IPER, PAL, CHS were induced with MFP application and induction was enhanced with ASR. Enriched pathways associated with pathogen defense included plant-pathogen interactions, MAPK signaling pathways, phenylpropanoid biosynthesis, glutathione metabolism, flavonoid metabolism and isoflavonoid metabolism. In field conditions, elevated antioxidant peroxidase activities and phenolic accumulation were measured with MFP treatment, however improved ASR control or enhanced crop yield were not observed. MFP elicitation differences between field and laboratory grown plants necessitates further testing to identify best practices for effective disease management with MFP-treated soybean.


Author(s):  
R E Martinez ◽  
J L Leatherwood ◽  
C E Arnold ◽  
K G Glass ◽  
K W Walter ◽  
...  

Abstract Dietary intervention may be a valuable strategy to optimize the intra-articular environment in young horses to prolong their performance career. To test the hypothesis that dietary supplementation of a Saccharomyces cerevisiae fermentation product would reduce markers of joint inflammation and increase markers of cartilage metabolism following a single inflammatory insult, Quarter Horse yearlings (mean ± SD; 9 ± 1.0 mo) were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to: 1.25% BW/d (dry matter basis) custom-formulated concentrate only (CON; n = 9) or concentrate top dressed with 21 g/d Saccharomyces cerevisiae fermentation product (SCFP; n = 10) for 98 d. Horses had ad libitum access to Coastal bermudagrass hay. On d 84, one randomly selected radial carpal joint from each horse was injected with 0.5 ng lipopolysaccharide solution (LPS). The remaining carpal joint was injected with sterile lactated Ringer’s solution as a contralateral control. Synovial fluid obtained before supplementation (d 0) and on d 84 at pre-injection h 0, and 6, 12, 24, 168, and 336 h post-injection was analyzed for prostaglandin E2 (PGE2), carboxypeptide of type II collagen (CPII), and collagenase cleavage neopeptide (C2C) by commercial assays. Rectal temperature, heart rate, respiration rate, carpal surface temperature, and carpal circumference (CC) were recorded prior to each sample collection and for 24 h post-injection. Data were analyzed using linear models with repeated measures. From d 0 to 84, synovial C2C declined (P ≤ 0.01) and the CPII:C2C ratio increased (P ≤ 0.01) in all horses with no effect of diet. In response to intra-articular LPS, synovial PGE2 increased by h 6 (P ≤ 0.01) and returned to baseline by h 336, CPII increased by h 12, remained elevated through h 168 (P ≤ 0.01), and returned to baseline by h 336, and C2C increased by h 6 (P ≤ 0.01) but did not return to baseline through h 336 (P ≤ 0.01). Post-intra-articular injection, PGE2 levels were lower in SCFP than CON horses (P = 0.01) regardless of injection type. Synovial CPII and the CPII:C2C ratio demonstrated stability during the LPS challenge in SCFP compared to CON horses (P ≤ 0.01). Clinical parameters were not influenced by diet but increased in response to repeated arthrocentesis (P ≤ 0.01). Dietary SCFP may favorably modulate intra-articular inflammation following an acute stressor and influence cartilage turnover in young horses.


Author(s):  
Nathaniel W. Fortney ◽  
Nathaniel J. Hanson ◽  
Paula R. F. Rosa ◽  
Timothy J. Donohue ◽  
Daniel R. Noguera

The economy of biorefineries is influenced not only by biofuel production from carbohydrates but also by the production of valuable compounds from largely underutilized industrial residues. Currently, the demand for many chemicals that could be made in a biorefinery, such as succinic acid (SA), medium-chain fatty acids (MCFAs), and lactic acid (LA), is fulfilled using petroleum, palm oil, or pure carbohydrates as raw materials, respectively. Thin stillage (TS), the residual liquid material following distillation of ethanol, is an underutilized coproduct from the starch biofuel industry. This carbon-rich material has the potential for chemical upgrading by microorganisms. Here, we explored the formation of different fermentation products by microbial communities grown on TS using different bioreactor conditions. At the baseline operational condition (6-day retention time, pH 5.5, 35°C), we observed a mixture of MCFAs as the principal fermentation products. Operation of a bioreactor with a 1-day retention time induced an increase in SA production, and a temperature increase to 55°C resulted in the accumulation of lactic and propionic acids. In addition, a reactor operated with a 1-day retention time at 55°C conditions resulted in LA accumulation as the main fermentation product. The prominent members of the microbial community in each reactor were assessed by 16S rRNA gene amplicon sequencing and phylogenetic analysis. Under all operating conditions, members of the Lactobacillaceae family within Firmicutes and the Acetobacteraceae family within Proteobacteria were ubiquitous. Members of the Prevotellaceae family within Bacteroidetes and Lachnospiraceae family within the Clostridiales order of Firmicutes were mostly abundant at 35°C and not abundant in the microbial communities of the TS reactors incubated at 55°C. The ability to adjust bioreactor operating conditions to select for microbial communities with different fermentation product profiles offers new strategies to explore and compare potentially valuable fermentation products from TS and allows industries the flexibility to adapt and switch chemical production based on market prices and demands.


Author(s):  
N. V. Fomicheva ◽  
G. Yu. Rabinovich ◽  
E. A. Prutenskaya ◽  
Yu. D. Smirnova

Livestock and poultry wastes, when effectively managed, become feedstock for organic fertiliser production. Researchers from the All-Russian Research Institute of Reclaimed Lands, the branch of Federal Research Center “V.V. Dokuchaev Soil Science Institute”, proposed an accelerated regimen of cattle manure solid-phase fermentation with peat: 48 h at 37 °C, then 48 h at 60 °C and 24 h at 37 °C, terminating with nat-ural cooling of the fermented mass. A distinctive feature of the proposed accelerated fermentation is maintenance of set-point temperatures. The aim of the work is to perform a microbiological evaluation of the process of accelerated solid-phase fermentation. An experiment was carried out in a 1.75 dm3 laboratory fermenter. During the fermentation, we studied the number of microorganisms, which use organic and mineral nitrogen forms, using the limiting dilution method, as well as the species membership by mass spectrometry. The experimental findings showed that the temperature regime of the main fermentation steps yielded the maximum number of mesophilic and thermophilic nitrogen-transforming microorganisms. Their active growth caused the intensive transformation of the fermented mixture, as evidenced by mesophilic and thermophilic mineralisation coefficients. At the end of the process, the linear mineralisation coefficients were used to assess the completion of the fermentation product transformation and stabilisation. The fermentation product comprised a high number of nitrogen-transforming microorganisms (on average, 3.5±0.3•108 COE/g on a dry weight basis). The determination of the microbiota species membership in the fermented mass and the final product confirmed that the process temperature regime ensured the elimination of the sanitary-indicatory microorganisms present in the original mixture (E. coli, Citrobacter, Proteus). In addition, during pasteurisation, this regime led to the active development of non-pathogenic Bacillus bacteria (B. megaterium, B. subtilis, B. licheniformic, B. pumilus and B. altitudinis). The fermentation product is recommended for use as an environmentally safe organic fertiliser based on the microbiological evaluation.


Sign in / Sign up

Export Citation Format

Share Document