balance approach
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 105)

H-INDEX

48
(FIVE YEARS 6)

Author(s):  
Craig R. Jensen ◽  
David P. Genereux ◽  
Troy E. Gilmore ◽  
D. Kip Solomon ◽  
Aaron R. Mittelstet ◽  
...  

2022 ◽  
Author(s):  
Truls Andersen ◽  
Marcel de Vries ◽  
Jaroslaw Necki ◽  
Justyna Swolkien ◽  
Malika Menoud ◽  
...  

Abstract. Coal mining accounts for ~ 12 % of the total anthropogenic methane emissions worldwide. The Upper Silesian Coal Basin, Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coalbed CH4 emissions into the atmosphere are poorly characterized. As part of the Carbon Dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May – June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150–300 m downwind of five individual ventilation shafts in the USCB. In addition, we also measured δ13C-CH4, δ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speeds and directions. We have used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data, and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2 = 0.7 – 0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified though. As an alternative, we have developed three upscaling approaches, i.e., by scaling the E-PRTR annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate that are derived from the hourly emission inventory. These estimates are in the range of 325 – 447 kt CH4/year for the inverse Gaussian approach and 268 – 347 kt CH4/year for the mass balance approach, respectively. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions.


2021 ◽  
Vol 38 (2) ◽  
pp. 15-24
Author(s):  
Lalit Saikia ◽  
Chandan Mahanta

Morphology of an alluvial river channel is the consequence of erosion, sediment transport and sedimentation in a river. Sediment budget accounts for the sources, sinks and redistribution pathways of sediments, solutes and nutrients in a unit region over unit time. Human activities are the most important factors that affect the variation in the pattern of river sediment load. This paper discusses sediment budget of a few large rivers by review of literature and estimation of sediment budget of Brahmaputra River in Assam using mass balance approach. An attempt has also been made to discuss human and climatic impact on sediment load of major rivers of the world. Total sediment load in the Brahmaputra River at downstream location (India-Bangladesh border) was estimated to be 814×106 t/year. Considering 10% of sediment load of the Brahmaputra as bed load, suspended sediment load at downstream was estimated to be 733×106 t/year. Tributaries, bank erosion and scouring of river bed were found to contribute 52%, 27% and 21% respectively to sediment load of Brahmaputra at downstream locations. In spite of limitations of the dependable data, future complexity due to climate change impact and hydropower dam initiative in upstream of the River, the study is a simplified approach in sediment budgeting of the Brahmaputra.


2021 ◽  
Vol 21 (20) ◽  
pp. 15461-15491
Author(s):  
Sepehr Fathi ◽  
Mark Gordon ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
Andrea Darlington ◽  
...  

Abstract. We investigate the potential for aircraft-based top-down emission rate retrieval over- and under-estimation using a regional chemical transport model, the Global Environmental Multiscale-Modeling Air-Quality and CHemistry (GEM-MACH). In our investigations we consider the application of the mass-balance approach in the Top-down Emission Rate Retrieval Algorithm (TERRA). Aircraft-based mass-balance retrieval methodologies such as TERRA require relatively constant meteorological conditions and source emission rates to reliably estimate emission rates from aircraft observations. Avoiding cases where meteorology and emission rates change significantly is one means of reducing emissions retrieval uncertainty, and quantitative metrics that may be used for retrieval accuracy estimation are therefore desirable. Using these metrics has the potential to greatly improve emission rate retrieval accuracy. Here, we investigate the impact of meteorological variability on mass-balance emission rate retrieval accuracy by using model-simulated fields as a proxy for real-world chemical and meteorological fields, in which virtual aircraft sampling of the GEM-MACH output was used for top-down mass balance estimates. We also explore the impact of upwind emissions from nearby sources on the accuracy of the retrieved emission rates. This approach allows the state of the atmosphere used for top-down estimates to be characterized in time and 3D space; the input meteorology and emissions are “known”, and thus potential means for improving emission rate retrievals and determining the factors affecting retrieval accuracy may be investigated. We found that emissions retrieval accuracy is correlated with three key quantitative criteria, evaluated a priori from forecasts and/or from observations during the sampling period: (1) changes to the atmospheric stability (described as the change in gradient Richardson number), (2) variations in the direction of transport, as a result of plume vertical motion and in the presence of vertical wind shear, and (3) the combined effect of the upwind-to-downwind concentration ratio and the upwind-to-downwind concentration standard deviations. We show here that cases where these criteria indicate high temporal variability and/or high upwind emissions can result in “storage-and-release” events within the sampled region (control volume), which decrease emission rate retrieval accuracy. Storage-and-release events may contribute the bulk of mass-balance emission rate retrieval under- and over-estimates, ranging in the tests carried out here from −25 % to 24 % of the known (input) emissions, with a median of −2 %. Our analysis also includes two cases with unsuitable meteorological conditions and/or significant upwind emissions to demonstrate conditions which may result in severe storage, which in turn cause emission rate under-estimates by the mass-balance approach. We also introduce a sampling strategy whereby the emission rate retrieval under- and over-estimates associated with storage-and-release are greatly reduced (to −14 % to +5 %, respectively, relative to the magnitude of the known emissions). We recommend repeat flights over a given facility and/or time-consecutive upwind and downwind (remote) vertical profiling of relevant fields (e.g., tracer concentrations) in order to measure and account for the factors associated with storage-and-release events, estimate the temporal trends in the evolution of the system during the flight/sampling time, and partially correct for the effects of meteorological variability and upwind emissions.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5859
Author(s):  
Kira Weise ◽  
Neven Ukrainczyk ◽  
Eduardus Koenders

The reactivity of supplementary cementitious materials (SCMs) is a key issue in the sustainability of cement-based materials. In this study, the effect of drying with isopropanol and acetone as well as the interpretation of thermogravimetric data on the results of an R3 test for evaluation of the SCM pozzolanic reaction were investigated. R3 samples consisting of calcium hydroxide, potassium hydroxide, potassium sulphate, water, and SCM were prepared. Besides silica fume, three different types of calcined clays were investigated as SCMs. These were a relatively pure metakaolin, a quartz-rich metakaolin, and a mixed calcined clay, where the amount of other types of clays was two times higher than the kaolinite content. Thermogravimetric analysis (TGA) was carried out on seven-day-old samples dried with isopropanol and acetone to stop the reaction processes. Additional calorimetric measurement of the R3 samples was carried out for evaluation of the reaction kinetics. Results show that drying with isopropanol is more suitable for analysis of R3 samples compared to acetone. The use of acetone results in increased carbonation and TGA mass losses until 40 (isothermal drying for 30 min) and 105 °C (ramp heating), indicating that parts of the acetone remain in the sample, causing problems in the interpretation of TGA data. A mass balance approach was proposed to calculate calcium hydroxide consumption from TGA data, while also considering the amount of carbonates in the sample and TGA data corrections of original SCMs. With this approach, an improvement of the linear correlation of TGA results and heat release from calorimetric measurement was achieved.


2021 ◽  
Vol 171 ◽  
pp. 112708
Author(s):  
P.T. Harris ◽  
J. Tamelander ◽  
Y. Lyons ◽  
M.L. Neo ◽  
T. Maes

2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


Sign in / Sign up

Export Citation Format

Share Document