jet velocity
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 61)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Hong-xiang Zheng ◽  
Yun Luo ◽  
Jing-Yu Zang ◽  
Qian Zhang

Abstract Water jet peening can effectively improve the fatigue strength of metal materials, and the outlet shape of nozzle greatly affects the effect of water jet peening. In this paper, the effects of nozzle outlet shape on water jet velocity and impact pressure is studied by numerical simulation, and the jet velocity and dynamic pressure for different standoff distances are also discussed. The results show that the water jets of square, circular and triangular nozzles are highly concentrated, and the water jet of elliptical nozzles is the most divergent. The axial velocity attenuation of the square nozzle along the axis is slower than that of the other three nozzles. The water axial velocity of the elliptical nozzle attenuates fastest and the length of the core segment of the water jet is the smallest. Within a certain axial distance, the dynamic pressure area in the central area of the elliptical water jet is obviously larger than that of the other three nozzles, and the effective treatment range is large, which is more suitable for the welding surface strengthening operation.


2021 ◽  
Vol 931 ◽  
Author(s):  
Luis Javier Perez-Lorenzo ◽  
Juan Fernandez de la Mora

Time of flight (TOF) and energy analysis in vacuum are used in series to determine jet velocity Uj, diameter dj, electrical potential Vj and energy dissipated ΔV at the breakup point of electrified nanojets of the ionic liquid 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (EMI-FAP) (Ignat'ev et al., J. Fluorine Chem., vol. 126, issue 8, 2008, pp.1150–1159). The full spray is periodically gated by a grid held at a high voltage Vg, and received at a collector where the measured flight times provide the distribution of drop speeds u. Varying Vg provides the bivariate distribution of drop energies ξ and velocities. The collector plate, centred with the beam axis, is divided into eight concentric rings, yielding the angular distribution of the spray current, and high resolution (u,ξ) values in the whole spray. The energies of various particles of given u are all well defined, but depend uniquely on u, even though u and ξ are in principle independent experimental variables. Slow and fast particles have energies respectively well above and below the capillary voltage Ve (1.64 kV). As previously shown by Gamero-Castaño & Hruby (J. Fluid Mech., vol. 459, 2002, pp. 245–276), this behaviour is due to the 2-stage acceleration process, first jointly in the jet for all particles, and then separately for free flying drops or ions of different mass/charge. The measured two-dimensional distributions of u and ξ provide the jet velocity Uj (~0.44 km s−1) and electrical potential Vj (1.2 kV) at the breakup point. All molecular ions originate near the breakup point rather than the meniscus neck. A measurable fraction of anomalously fast drops is observed that must come from Coulomb fissions of the main drops.


Author(s):  
Yong Zhang ◽  
Yuyang Liu ◽  
Xigang Yang ◽  
Guoqing Chen ◽  
Baosheng Jin

Abstract For an air staged combustion boiler, the rational organization of jets to form closing-to-wall film using as little air as possible plays a key role in resolving the high temperature corrosion problems. In this work, a comprehensive computational fluid dynamics (CFD) model including hydrodynamics and coal combustion is established for a 660 MW opposed wall fired boiler. Based on the grid independence and model validation, the flow field, temperature profile, and species concentration are predicted, and the influences of the structure of nozzles and the operation parameter of jets are further evaluated. The results show that the corrosion area of the side wall is dependent on the jet projection velocity and nozzle structures. The increase of the jet velocity does not always have an active influence on the reduction of corrosive area. Only increasing the nozzle diameter does not always have a positive impact on the improvement of the corrosion. The increase of the jet inclination angle can extend the jet trajectory, contributing to increase the oxygen coverage area. Reasonably adjusting the jet inclination angle of each layer can obtain the lower corrosion area. The increase of jet row number leads to a decrease in the spacing between rows, which enables the downstream jet to penetrate deeper into the cross stream. By increasing the number of jet layers and reducing the jet velocity of each layer, the lowest corrosion area can be obtained.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-319804
Author(s):  
Yannick Kaiser ◽  
Nick S Nurmohamed ◽  
Jeffrey Kroon ◽  
Hein J Verberne ◽  
Evangelos Tzolos ◽  
...  

ObjectiveTo assess whether patients with aortic valve stenosis (AS) with elevated lipoprotein(a) (Lp(a)) are characterised by increased valvular calcification activity compared with those with low Lp(a).MethodsWe performed 18F-sodium fluoride (18F-NaF) positron emission tomography/CT in patients with mild to moderate AS (peak aortic jet velocity between 2 and 4 m/s) and high versus low Lp(a) (>50 mg/dL vs <50 mg/dL, respectively). Subjects were matched according to age, gender, peak aortic jet velocity and valve morphology. We used a target to background ratio with the most diseased segment approach to compare 18F-NaF uptake.Results52 individuals (26 matched pairs) were included in the analysis. The mean age was 66.4±5.5 years, 44 (84.6%) were men, and the mean aortic valve velocity was 2.80±0.49 m/s. The median Lp(a) was 79 (64–117) mg/dL and 7 (5–11) mg/dL in the high and low Lp(a) groups, respectively. Systolic blood pressure and low-density-lipoprotein cholesterol (corrected for Lp(a)) were significantly higher in the low Lp(a) group (141±12 mm Hg vs 128±12 mm Hg, 2.5±1.1 mmol/L vs 1.9±0.8 mmol/L). We found no difference in valvular 18F-NaF uptake between the high and low Lp(a) groups (3.02±1.26 vs 3.05±0.96, p=0.902). Linear regression analysis showed valvular calcium score to be the only significant determinant of valvular 18F-NaF uptake (β=0.63; 95% CI 0.38 to 0.88 per 1000 Agatston unit increase, p<0.001). Lp(a) was not associated with 18F-NaF uptake (β=0.17; 95% CI −0.44 to 0.88, p=0.305 for the high Lp(a) group).ConclusionAmong patients with mild to moderate AS, calcification activity is predominantly determined by established calcium burden. The results do not support our hypothesis that Lp(a) is associated with valvular 18F-NaF uptake.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 224
Author(s):  
Paweł Gil ◽  
Joanna Wilk

The paper presents the preliminary results of the experimental investigation of four various loudspeakers used for driving the synthetic jet actuator. The parameters, characteristic synthetic jet velocity, pressure inside the cavity, device sound pressure level (SPL), and the heat sink thermal resistance, were presented for various input power and driving frequency. The resonance frequency was determined based on electrical impedance. The highest synthetic jet momentum velocity was achieved at diaphragm resonance frequency. The maximum sound pressure level was observed, also at resonant frequency. For the same real power delivered to the actuator and for its resonance frequency, the heat sink thermal resistance had the lowest value for the specific loudspeaker. In turn, the synthetic jet velocity reached maximum for this actuator. For all actuators tested, the sound pressure level was dependent on momentum velocity.


2021 ◽  
Author(s):  
Nadim Arafa ◽  
Pierre Sullivan ◽  
Alis Ekmekci

Abstract The effect of the excitation frequency of synthetic jet actuators on the mean jet velocity of synthetic jets issuing from an array of circular orifices is investigated experimentally. Herein, the focus is placed on an array of circular orifices, rather than a single orifice, as it brings the advantage of covering long-span airfoils. The array consists of 16 circular orifices, each having a diameter of 3.42 mm, distributed over a span of 300 mm. The jets are generated by the excitation of a single cavity via 16 piezoelectric elements. Localized velocity measurements at the exit of the orifices show that the mean jet velocity varies with the excitation frequency. Several distinct resonant peaks were observed in the frequency response. Acoustic simulations of the cavity showed that these peaks correspond to acoustic mode shapes of the cavity. Due to the high-aspect ratio of the cavity, several acoustic mode shapes exist in the excitation frequency range aside from the Helmholtz resonance frequency. Moreover, the mean jet velocity emanating from the array shows a variation from orifice to orifice, depending on the excited acoustic mode.


2021 ◽  
Author(s):  
Leonard Pease ◽  
Judith Bamberger

2021 ◽  
Vol 33 (6) ◽  
pp. 067122
Author(s):  
Jieli Wei ◽  
Qing Xie ◽  
Jian Zhang ◽  
Zhuyin Ren

Sign in / Sign up

Export Citation Format

Share Document