differential voltage
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 39)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Victor Hu ◽  
Daniel T. Schwartz

Low C-rate charge and discharge experiments, plus complementary differential voltage or differential capacity analysis, are among the most common battery characterization methods. Here, we adapt the multi-species, multi-reaction (MSMR) half-cell thermodynamic model to low C-rate cycling of whole-cell Li-ion batteries. MSMR models for the anode and cathode are coupled through whole-cell charge balances and cell-cycling voltage constraint equations, forming the basis for model-based estimation of MSMR half-cell parameters from whole-cell experimental data. Emergent properties of the whole-cell, like slippage of the anode and cathode lithiation windows, are also computed as cells cycle and degrade. A sequential least-square optimization scheme is used for parameter estimation from low-C cycling data of Samsung 18650 NMC|C cells. Low-error fits of the open-circuit cell voltage (e.g., under 5 mV mean absolute error for charge or discharge curves) and differential voltage curves for fresh and aged cells are achieved. We explore the features (and limitations) of using literature reference values for the MSMR half-cell thermodynamic parameters (reducing our whole-cell formulation to a 1-degree-of-freedom fit) and demonstrate the benefits of expanding the degrees of freedom by letting the MSMR parameters be tailored to the cell under test, within a constrained neighborhood of the half-cell reference values. Bootstrap analysis is performed on each dataset to show the robustness of our fitting to experimental noise and data sampling over the course of 600 cell cycles. The results show which specific MSMR insertion reactions are most responsible for capacity loss in each half-cell and the collective interactions that lead to whole-cell slippage and changes in useable capacity. Open-source software is made available to easily extend this model-based analysis to other labs and battery chemistries.


2021 ◽  
Vol 512 ◽  
pp. 230449
Author(s):  
Felix Katzer ◽  
Leonard Jahn ◽  
Markus Hahn ◽  
Michael A. Danzer

2021 ◽  
Vol MA2021-02 (4) ◽  
pp. 466-466
Author(s):  
Simon E. J. O'Kane ◽  
Ian D. Campbell ◽  
Waseem W. J. Marzook ◽  
Gregory James Offer ◽  
Monica Marinescu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sevdenur Arpaci ◽  
Victor Lopez-Dominguez ◽  
Jiacheng Shi ◽  
Luis Sánchez-Tejerina ◽  
Francesca Garesci ◽  
...  

AbstractThere is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn3/Pt devices. A six-terminal double-cross device is constructed, with an IrMn3 pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn3 after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn3 pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.


Sign in / Sign up

Export Citation Format

Share Document