herbicide treatment
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 40)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
pp. 1-30
Author(s):  
Clint W. Beiermann ◽  
Joshua W.A. Miranda ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
...  

Abstract The critical timing of weed removal (CTWR) is the point in crop development when weed control must be initiated to prevent crop yield loss due to weed competition. A field study was conducted in 2018 and 2020 near Scottsbluff, NE to determine how the use of preemergence herbicides impacts the CTWR in dry bean. The experiment was arranged as a split-plot, with herbicide treatment and weed removal timing as main and sub plot factors, respectively. Herbicide treatment consisted of no-preemergence, or pendimethalin (1070 g ai ha–1) + dimethenamid-P (790 g ai ha–1) applied preemergence. Sub-plot treatments included season-long weed-free, weed removal at: V1, V3, V6, R2, and R5 dry bean growth stages, and a season-long weedy control. A four-parameter logistic model was used to estimate the impact of time of weed removal, for all response variables including dry bean yield, dry bean plants m–1 row, pods plant–1, seeds pod–1, and seed weight. The CTWR based on 5% yield reduction was estimated to range from the V1 growth stage [(16 d after emergence (DAE)] to the R1 growth stage (39 DAE) in the no-PRE herbicide treatment. In the PRE-applied treatment, the CTWR began at the R2 growth stage (47 DAE). Dry bean plants m–1 row was reduced in the no-preemergence treatment when weed removal was delayed beyond the R2 growth stage in the 2020 field season. The use of preemergence-applied herbicides prevented a reduction in the number of pods plant–1 in 2020, and the number of seeds pod–1 in 2018 and 2020. In 2018, the number of pods plant–1 was reduced by 73% when no-preemergence was applied, compared to 26% in the preemergence-applied treatment. The use of preemergence-applied soil active herbicides in dry bean delayed the CTWR and preserved yield potential.


Author(s):  
Temuulen Tsagaan Sankey ◽  
Jackson Leonard ◽  
Margaret M. Moore ◽  
Joel B Sankey ◽  
Adam Belmonte

Abstract Woody encroachment, including both woody species expansion and density increase, is a globally observed phenomenon that deteriorates arid and semi-arid rangeland health, biodiversity, and ecosystem services. Mechanical and chemical control treatments are commonly performed to reduce woody cover and restore ecohydrologic function. While the immediate impacts of woody control treatments are well documented in short-term studies, treatment impacts at decadal scales are not commonly studied. Using a controlled herbicide treatment from 1954 in the Sierra Ancha Experimental Forest in central Arizona, USA, we quantify woody encroachment and associated aboveground carbon accumulation in treated and untreated watersheds. Woody encroachment and aboveground carbon are estimated using high resolution multispectral images and photogrammetric data from a fixed-wing unmanned aerial vehicle (UAV). We then combine the contemporary UAV image-derived estimates with historical records from immediately before and after the treatment to consider long-term trends in woody vegetation cover, aboveground carbon, water yield, and sedimentation. Our results indicate that the treatment has had a lasting impact. More than six decades later, woody cover in two treated watersheds are still significantly lower compared to two control watersheds, even though woody cover increased in all four drainages. Aboveground woody carbon in the treated watersheds is approximately one half that accumulated in the control watersheds. The historical records indicate that herbicide treatment also increased water yield and reduced annual sedimentation. Given the sustained reduction in woody cover and aboveground woody biomass in treated watersheds, we infer that the herbicide treatment has had similarly long lasting impacts on ecohydrological function. Land managers can consider legacy impacts from control treatments to better balance carbon and ecohydrological consequences of woody encroachment and treatment activities.


2021 ◽  
Author(s):  
Kane Winslow Russell ◽  
Robert A. York

Abstract Background In the wake of increasingly frequent and severe wildfires in California, artificial regeneration and density management facilitate prompt reforestation and the rapid growth of large, fire-resistant trees. Young plantations are particularly prone to high-severity wildfire effects, suggesting the implementation of fuel reduction treatments in the early stages of stand development. The extent to which density management (i.e., thinning) and fuels management (i.e., prescribed fire) can work together is uncertain given their potentially conflicting effects on tree and stand level growth. We investigated how four different treatments – mastication, mastication plus herbicide, two prescribed burns, and mastication plus two burns – affected individual and stand-level growth versus fuel loads in mixed-conifer plantations during young stand development in the north-central Sierra Nevada, California, USA. Results The mastication plus herbicide treatment maximized individual tree growth, especially for white fir and incense-cedar, but fuel loads doubled after five years without the use of fire. The mastication only treatment resulted in a 151% increase in fuel loads over the same period, and individual tree growth was comparable to the burn only and mastication plus burn treatments. The burn only treatment greatly decreased fuel loads but also resulted in low relative stand growth. The mastication plus burn treatment prevented fuel accumulation and generally did not slow down individual tree growth. In addition, stand growth occurred at a rate similar to that of the mastication plus herbicide treatment. Conclusions Mastication followed by repeated prescribed burning could be a viable management strategy to reduce wildfire hazard without sacrificing growth in young mixed-conifer stands that are entering a vulnerable stage of fire risk. Mastication in combination with herbicide may grow trees to a large, fire-resistant size more quickly, but does not address fuel buildup. The use of fire alone can effectively reduce fuels while not substantially impacting individual tree growth, but stand growth may decline relative to mastication and herbicide.


2021 ◽  
Author(s):  
Daniel Gräns ◽  
Fikret Isik ◽  
Robert C Purnell ◽  
Ilona M Peszlen ◽  
Steven E McKeand

Abstract The effect of silvicultural treatments (herbicide, fertilization, herbicide + fertilization) and the interactions with genetic effects were investigated for wood quality traits in a 16-year-old loblolly pine (Pinus taeda L.) genetic test established in southwest Georgia, USA. Fertilizer and herbicide treatment combinations were applied multiple times to main plots containing twenty-five open-pollinated families as sub plots. Significant differences among treatments were found for all traits. Squared acoustic velocity, used as a surrogate for wood stiffness, was higher in herbicide-only plots compared with other treatments. Wood density was considerably lower in fertilization plots. A large proportion of variance observed for wood quality traits was explained by additive genetic effects, with individual-tree heritabilities ranging from 0.78 (ring 7–16 section wood density) to 0.28 (ring 2–6 section wood density). Corresponding family-mean heritability values were well over 0.86. Genotype-by-treatment interactions were nonsignificant for all traits, indicating no need to match families to silvicultural treatments. Wood quality traits had weak genetic correlations with growth and stem quality traits (stem slenderness, sweep, and branch angle) with a range of −0.33 to 0.43, suggesting that recurrent selection on growth or stem quality traits would not adversely affect wood quality in loblolly pine. Study Implications: Silvicultural treatments of herbicide, fertilization, and their combination had significant effects on wood stiffness and wood density in a 16-year-old loblolly pine genetics-by-silviculture trial. When fertilizer was applied, wood density decreased, but the impact on stiffness was minimal. The herbicide treatment increased wood stiffness. As expected, there were large genetic differences for wood quality traits and growth and stem quality traits. Genetics-by-silvicultural treatment interactions were not significant for wood quality traits; family rankings were quite stable across cultural regimes. Families that performed well under one silvicultural treatment performed well under all treatments.


2021 ◽  
Vol 839 (2) ◽  
pp. 022030
Author(s):  
S Ilina ◽  
I Ivanova ◽  
A Fadeev
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11783
Author(s):  
Jacob W. Lawson ◽  
Mark Fennell ◽  
Mark W. Smith ◽  
Karen L. Bacon

Reynoutria japonica (Japanese knotweed) is a problematic invasive plant found in many areas of Europe and North America. Notably, in the UK, the species can cause issues with mortgage acquisition. Control of R. japonica is complicated by its ability to regenerate from small fragments of plant material; however, there remains uncertainty about how much (in terms of mass) rhizome is required for successful regeneration. This study investigated the ability of crowns and rhizomes with different numbers of nodes to regenerate successfully from three sites in the north of England, UK. Two of the sites had been subject to herbicide treatment for two years prior to sampling and the third site had no history of herbicide treatment. No significant differences were observed in regenerated stem diameter, maximum height of stem and maximum growth increments among crowns. All traits measured from the planted crowns were significantly greater than those of the planted rhizome fragments and at least one node was necessary for successful regeneration of rhizomes. The smallest initial fragment weight to regenerate and survive the experiment was 0.5 g. Subjecting all plant material to desiccation for 38 days resulted in no regrowth (emergence or regeneration) after replanting. These findings suggest that desiccation could be a valuable management strategy for small to medium scale infestations common in urban settings.


2021 ◽  
Vol 778 ◽  
pp. 146108
Author(s):  
Vincent Baillard ◽  
Marie Laure Delignette-Muller ◽  
Cécile Sulmon ◽  
Anne-Kristel Bittebiere ◽  
Cendrine Mony ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 749
Author(s):  
Jorge Torres-Sánchez ◽  
Francisco Javier Mesas-Carrascosa ◽  
Francisco Jiménez-Brenes ◽  
Ana de Castro ◽  
Francisca López-Granados

Significant advances in weed mapping from unmanned aerial platforms have been achieved in recent years. The detection of weed location has made possible the generation of site specific weed treatments to reduce the use of herbicides according to weed cover maps. However, the characterization of weed infestations should not be limited to the location of weed stands, but should also be able to distinguish the types of weeds to allow the best possible choice of herbicide treatment to be applied. A first step in this direction should be the discrimination between broad-leaved (dicotyledonous) and grass (monocotyledonous) weeds. Considering the advances in weed detection based on images acquired by unmanned aerial vehicles, and the ability of neural networks to solve hard classification problems in remote sensing, these technologies have been merged in this study with the aim of exploring their potential for broadleaf and grass weed detection in wide-row herbaceous crops such as sunflower and cotton. Overall accuracies of around 80% were obtained in both crops, with user accuracy for broad-leaved and grass weeds around 75% and 65%, respectively. These results confirm the potential of the presented combination of technologies for improving the characterization of different weed infestations, which would allow the generation of timely and adequate herbicide treatment maps according to groups of weeds.


Sign in / Sign up

Export Citation Format

Share Document