fixed grid
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 17)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Feng Wang ◽  
Qingcheng Zhu ◽  
Xiaolong Li ◽  
Jiaming Gu ◽  
Zhenhua Yan ◽  
...  

Mixed-grid optical networks are in a migration state where fixed-grid and flex-grid optical networks coexist. To carry point-to-multipoint (P2MP) services in mixed-grid optical networks, routing and resource allocation (RRA) problems need to be solved. Once the RRA fails, services will be blocked and then influence quality of service. The minimized spectrum for satisfying the bandwidth request of services is called as a frequency block (FB). For a service, the total number of available FBs embodies the spectrum availability on a link. Because the fixed-grid and flex-grid links have different channel spacing, spectrum availability on fixed-grid and flex-grid links needs different evaluation method. We propose a RRA algorithm in mixed-grid optical networks for P2MP services by being aware of spectrum availability. The spectrum availability is evaluated according to fixed-grid and flex-grid constraints. Our proposed algorithm achieves the lower blocking probability (BP) than that of benchmark RRA algorithms according to simulation results.


2021 ◽  
Vol 9 (9) ◽  
pp. 989
Author(s):  
Baigang Huang ◽  
Jianjun Jiang ◽  
Zaojian Zou

A method based on a coarse- and fine-tuning fixed-grid wavelet networks is presented for online prediction of the coupled heave-pitch motions of a ship in irregular waves. The online modeling method contains two processes, i.e., coarse tuning and fine tuning. The coarse tuning is used to select the important wavelet terms, while the fine tuning is only used to compute the related coefficients of the selected wavelet terms. The Givens transformation algorithm is applied to realize the fine-tuning process. Due to the continuous fine-tuning process, the computational efficiency is improved significantly. Both simulation data and experimental data are used to verify the modeling method. The prediction results illustrate that the method has the ability to online predict the coupled heave-pitch motions of a ship in irregular waves.


SIMULATION ◽  
2021 ◽  
pp. 003754972110235
Author(s):  
Syed Samar Abbas ◽  
Mohammad Shakir Nasif ◽  
Rafat Al-Waked

Numerical fluid–structure interaction (FSI) methods have been widely used to predict the cardiac mechanics and associated hemodynamics of native and artificial heart valves (AHVs). Offering a high degree of spatial and temporal resolution, these methods circumvent the need for cardiac surgery to assess the performance of heart valves. Assessment of these FSI methods in terms of accuracy, realistic modeling, and numerical stability is required, which is the objective of this paper. FSI methods could be classified based on how the computational domain is discretized, and on the coupling techniques employed between fluid and structure domains. The grid-based FSI methods could be further classified based on the kinematical description of the computational fluid (blood) grid, being either fixed grid, moving grid, or combined fixed–moving grid methods. The review reveals that fixed grid methods mostly cause imprecise calculations of flow parameters near the blood–leaflet interface. Moving grid methods are more accurate, however they require cumbersome remeshing and smoothing. The combined fixed–moving grid methods overcome the shortcomings of fixed and moving grid methods, but they are computationally expensive. The mesh-free methods have been able to encounter the problems faced by grid-based methods; however, they have been only limitedly applied to heart valve simulations. Among the coupling techniques, explicit partitioned coupling is mostly unstable, however the implicit partitioned coupling not only has the potential to be stable but is also comparatively cheaper. This in-depth review is expected to be helpful for the readers to evaluate the pros and cons of FSI methods for heart valve simulations.


2021 ◽  
Vol 24 (2) ◽  
pp. first
Author(s):  
Truong V. Vu ◽  
Vinh T. Nguyen ◽  
Phan H. Nguyen ◽  
Nang X. Ho ◽  
Binh D. Pham ◽  
...  

Introduction: Compound fluid filaments appear in many applications, e.g., drug delivery and processing or microfluidic systems. This paper focuses on the numerical simulation of an incompressible, immiscible, and Newtonian fluid for the contraction process of a fluid compound filament by solving the Navier-Stokes equations. The front-tracking method is used to solve this problem, which uses connected segments (Lagrangian grid) that move on a fixed grid (Eulerian grid) to represent the interface between the liquids. Methods: The interface points are advected by the velocity interpolated from those of the fixed grid using the area weighting function. The coordinates of the interface points are used to construct the indicators specifying the different fluids and compute the interfacial tension force. Results: The simulation results show that under the effects of the interfacial tension, the capsuleshaped filament can transform into a spherical compound droplet (i.e., non-breakup) or can break up into smaller spherical compound and simple droplets (i.e., breakup). When the density ratio of the outer to middle fluids increases, the filament changes from non-breakup to breakup upon contraction. Conclusion: Increasing the density ratio enhances the breakup of the compound filament during contraction. The breakup is also promoted by increasing the initial length of the filament.


2021 ◽  
Vol 246 ◽  
pp. 07005
Author(s):  
Natasa Nord ◽  
Yuemin Ding ◽  
Dmytro Ivanko ◽  
Harald Taxt Walnum

Due to the rapid development of the building stock in Norway, the energy use in this segment is drastically increasing. Therefore, improving the energy performance of buildings becoming an urgent problem. Among technical systems in buildings, domestic hot water (DHW) systems have still significant untapped potential for energy saving. Storage tanks enable us to change DHW demand in buildings in a more energy-efficient and cost-effective way. However, to achieve this effect, the proper sizing and operation of the storage tanks are required. The aim of this study was to define a method for the DHW tank size optimization considering dynamic electricity prices and to assess how different electricity pricing methods would influence the DHW tank size. A dynamic discretized model of the DHW tank was used as a DHW tank model. Dynamic optimization was implemented as the optimization method to find the optimal tank charging rate based on the different pricing methods. Two pricing methods were considered in this study: 1) the current method with the fixed grid fee and 2) the power extraction method with the pricing of the maximum power extraction. The results showed that the electricity pricing pattern had significant impact on the DHW charging heating rate. In the case of the extraction fee pricing method, the charging rate was more stable over the day than in the case of the fixed grid fee. This stable charging rate gave stable DHW tank temperature over the day and the highest decrease in the total cost. A general conclusion was that the extraction grid fee pricing method would promote for stable charging over the day.


Author(s):  
Thomas Hoffman-Walbeck ◽  
◽  
Richard Adams II ◽  

We describe the design of a JavaScript prototype that allows the user to visualize an arbitrary production workflow for print production that is based on the Process-Resource Model. The user can create square cards of type “process,” “resource” or “resource group.” For each card, a name might be chosen out of a list and neighboring relations can be set (input and output). Each card should be positioned on a fixed grid. Finally, the user can check the workflow design according to different reasoning.


2020 ◽  
Vol 78 (7) ◽  
pp. 306-320 ◽  
Author(s):  
Virendra Patel ◽  
Anshul Yadav ◽  
Seshadev Sahoo ◽  
Dhirendranath Thatoi ◽  
Jerzy Winczek

Sign in / Sign up

Export Citation Format

Share Document