amphidinium carterae
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Armando Mendoza-Flores ◽  
Clara Elizabeth Galindo-Sánchez ◽  
M. del Pilar Sánchez-Saavedra

Abstract The irradiance level used to the microalgae cultures can modify the growth and proximate composition, however, this response is specie specific. The dinoflagellate group had the potential to be used as a source to biofuel production. In this study was evaluated the effect of five irradiance levels (50, 100, 150, 200, and 250 µmol photon m-2 s­-1) on the growth rate, proximal composition, pigment content, and photosynthesis of Amphidinium carterae. The highest cell concentration was for the cultures at 150 µmol photon m-2 s-1 (130 × 103 cells mL-1), and the lowest values for 50 µmol photon m-2 s-1 (49 × 103 cells mL-1). The cultures maintained under the low irradiance (50 µmol photon m-2 s-1) had the highest values of total dry weight (TDW) (13418 pg cell-1), organic dry weight (ODW) (3836 pg cell-1), and inorganic dry weight (IDW) (9582 pg cell-1). The protein content as the general trend increases significantly concerning the irradiance level, with the higher values (87.47 pg cell-1) at high irradiance (250 µmol photon m-2 s-1). Carbohydrate content was different by the effect of irradiance, with the higher values (32.85 pg cell-1) at the low irradiance used (50 µmol photon m-2 s-1). Lipid content was modified by the effect of irradiance, with the highest values (534.74 pg cell-1) at the low irradiance used (50 µmol photon m-2 s-1). As a general trend, the high irradiances increased the photosynthesis curves. These findings demonstrate that the strain of A. carterae used in this work can grow in high irradiances (100 to 250 µmol photon m-2 s-1) and increase significantly the lipid content on low irradiance used (50 µmol photon m-2 s-1).


2022 ◽  
Vol 10 (1) ◽  
pp. 156
Author(s):  
Loredana Stabili ◽  
Margherita Licciano ◽  
Adriana Giangrande ◽  
Carmela Caroppo

Harmful algal blooms (HABs) are extreme biological events representing a major issue in marine, brackish, and freshwater systems worldwide. Their proliferation is certainly a problem from both ecological and socioeconomic contexts, as harmful algae can affect human health and activities, the marine ecosystem functioning, and the economy of coastal areas. Once HABs establish, valuable and environmentally friendly control actions are needed to reduce their negative impacts. In this study, the influence exerted by the filter-feeding activity of the two sabellid polychaetes Branchiomma luctuosum (Grube) and Sabella spallanzanii (Gmelin) on a harmful dinoflagellate was investigated. Clearance rates (C) and retention efficiencies were estimated by employing the microalga Amphidinium carterae Hulburt. The Cmax was 1.15 ± 0.204 L h−1 g−1 DW for B. luctuosum and 0.936 ± 0.151 L h−1 g−1 DW for S. spallanzanii. The retention efficiency was 72% for B. luctuosum and 68% for S. spallanzanii. Maximum retention was recorded after 30 min for both species. The obtained results contribute to the knowledge of the two polychaetes’ filtration activity and to characterize the filtration process on harmful microalgae in light of the protection of water resources and human health. Both species, indeed, were extremely efficient in removing A. carterae from seawater, thus suggesting their employment as a new tool in mitigation technologies for the control of harmful algae in marine environments, as well as in the aquaculture facilities where HABs are one of the most critical threats.


2021 ◽  
Vol 9 (11) ◽  
pp. 1275
Author(s):  
George N. Hotos ◽  
Despoina Avramidou

After a 1.5-year screening survey in the lagoons of Western Greece in order to isolate and culture sturdy species of microalgae for aquaculture or other value-added uses, as dictated primarily by satisfactory potential for their mass culture, five species emerged, and their growth was monitored in laboratory conditions. Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asteromonas gracilis, and Dunaliella sp. were batch cultured using low (20 ppt), sea (40 ppt), and high salinity (50 or 60 or 100 ppt) and in combination with low (2000 lux) and high (8000 lux) intensity illumination. The results exhibited that all these species can be grown adequately in all salinities and with the best growth in terms of maximum cell density, specific growth rate (SGR), and biomass yield (g dry weight/L) at high illumination (8000 lux). The five species examined exhibited different responses in the salinities used, whereby Amphidinium clearly performs best in 20 ppt, far better than 40 ppt, and even more so than 50 ppt. Nephroselmis and Tetraselmis grow almost the same in 20 and 40 ppt and less well in 60 ppt. Asteromonas performs best in 100 ppt, although it can grow quite well in both 40 and 60 ppt. Dunaliella grows equally well in all salinities (20, 40, 60 ppt). Concerning the productivity, assessed as the maximum biomass yield at the end of the culture period, the first rank is occupied by Nephroselmis with ~3.0 g d.w./L, followed by Tetraselmis (2.0 g/L), Dunaliella (1.58 g/L), Amphidinium (1.19 g/L), and Asteromonas (0.7 g/L) with all values recorded at high light (8000 lux).


2021 ◽  
Vol 22 (22) ◽  
pp. 12196
Author(s):  
Maria Elena Barone ◽  
Elliot Murphy ◽  
Rachel Parkes ◽  
Gerard T. A. Fleming ◽  
Floriana Campanile ◽  
...  

Microalgae have received growing interest for their capacity to produce bioactive metabolites. This study aimed at characterising the antimicrobial potential of the marine dinoflagellate Amphidinium carterae strain LACW11, isolated from the west of Ireland. Amphidinolides have been identified as cytotoxic polyoxygenated polyketides produced by several Amphidinium species. Phylogenetic inference assigned our strain to Amphidinium carterae subclade III, along with isolates interspersed in different geographic regions. A two-stage extraction and fractionation process of the biomass was carried out. Extracts obtained after stage-1 were tested for bioactivity against bacterial ATCC strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The stage-2 solid phase extraction provided 16 fractions, which were tested against S. aureus and E. faecalis. Fractions I, J and K yielded minimum inhibitory concentrations between 16 μg/mL and 256 μg/mL for both Gram-positive. A targeted metabolomic approach using UHPLC-HRMS/MS analysis applied on fractions G to J evidenced the presence of amphidinol type compounds AM-A, AM-B, AM-22 and a new derivative dehydroAM-A, with characteristic masses of m/z 1361, 1463, 1667 and 1343, respectively. Combining the results of the biological assays with the targeted metabolomic approach, we could conclude that AM-A and the new derivative dehydroAM-A are responsible for the detected antimicrobial bioactivity.


Author(s):  
George Hotos

After a 1.5 year screening survey in the lagoons of Western Greece in order to isolate and culture sturdy species of microalgae for aquaculture or other value added uses, as dictated primarily by a satisfactory potential for their mass-culture, five species emerged and their growth was monitored in laboratory conditions. Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asteromonas gracilis and Dunaliella sp. were batch cultured using low (20 ppt), sea (40 ppt) and high salinity (50 or 60 or 100 ppt) and in combination with a low (2000 lux) and high (8000 lux) intensity of illumination. The results exhibited that all these species can be grown adequately in all salinities and with best growth in terms of maximum cell density, specific growth rate (SGR) and biomass yield (g dry weight/L) at high illumination (8000 lux). The five species examined exhibited different responses in the salinities used, Amphidinium clearly does best in 20 ppt far better than 40 ppt and even more than 50 ppt. Nephroselmis and Tetraselmis grow almost the same in 20 and 40 ppt and less well in 60 ppt. Asteromonas does best in 100 ppt although it can grow quite well in both 40 and 60 ppt. Dunaliella grows equally well in all salinities (20-40-60 ppt). Concerning productivity as maximum biomass yield at the end of the culture period, first rank is occupied by Nephroselmis with ~3.0 g d.w./L, followed by Tetraselmis (2.0 g/L), Dunaliella (1.58 g/L), Amphidinium (1.19 g/L) and Asteromonas (0.7 g/L) with all values recorded at high light (8000 lux).


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2471
Author(s):  
Su-Chun Wang ◽  
Fei-Fei Liu ◽  
Tian-Yuan Huang ◽  
Jin-Lin Fan ◽  
Zhi-Yin Gao ◽  
...  

Recently, the effects of nanoplastics (NPs) on aquatic organisms have attracted much attention; however, research on the toxicity of NPs to microalgae has been insufficient. In the present study, the effects of polystyrene nanoplastics (nano-PS, 50 nm) on growth inhibition, chlorophyll content, oxidative stress, and algal toxin production of the marine toxigenic dinoflagellate Amphidinium carterae Hulburt were investigated. Chlorophyll synthesis was promoted by nano-PS on day 2 but was inhibited on day 4; high concentrations of nano-PS (≥50 mg/L) significantly inhibited the growth of A. carterae. Moreover, despite the combined effect of superoxide dismutase (SOD) and glutathione (GSH), high reactive oxygen species (ROS) level and malondialdehyde (MDA) content were still induced by nano-PS (≥50 mg/L), indicating severe lipid peroxidation. In addition, the contents of extracellular and intracellular hemolytic toxins in nano-PS groups were significantly higher than those in control groups on days 2 and 8, except that those of extracellular hemolytic toxins in the 100 mg/L nano-PS group decreased on day 8 because of severe adsorption of hemolytic toxins to the nano-PS. Hence, the effects of nano-PS on A. carterae are closely linked to nano-PS concentration and surface properties and exposure time. These findings provide a deep understanding of the complex effects of NPs on toxigenic microalgae and present valuable data for assessing their environmental risks.


2021 ◽  
pp. 125922
Author(s):  
M. López-Rodríguez ◽  
M.C. Cerón-García ◽  
L. López-Rosales ◽  
E. Navarro-López ◽  
A. Sánchez Mirón ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 432
Author(s):  
Adrián Morales-Amador ◽  
Alejandro Molina-Miras ◽  
Lorenzo López-Rosales ◽  
Asterio Sánchez-Mirón ◽  
Francisco García-Camacho ◽  
...  

The demand for valuable products from dinoflagellate biotechnology has increased remarkably in recent years due to their many prospective applications. However, there remain many challenges that need to be addressed in order to make dinoflagellate bioactives a commercial reality. In this article, we describe the technical feasibility of producing and recovering amphidinol analogues (AMs) excreted into a culture broth of Amphidinium carterae ACRN03, successfully cultured in an LED-illuminated pilot-scale (80 L) bubble column photobioreactor operated in fed-batch mode with a pulse feeding strategy. We report on the isolation of new structurally related AMs, amphidinol 24 (1, AM24), amphidinol 25 (2, AM25) and amphidinol 26 (3, AM26), from a singular fraction resulting from the downstream processing. Their planar structures were elucidated by extensive NMR and HRMS analysis, whereas the relative configuration of the C-32®C-47 bis-tetrahydropyran core was confirmed to be antipodal in accord with the recently revised configuration of AM3. The hemolytic activities of the new metabolites and other related derivatives were evaluated, and structure–activity conclusions were established. Their isolation was based on a straightforward and high-performance bioprocess that could be suitable for the commercial development of AMs or other high-value compounds from shear sensitive dinoflagellates.


Sign in / Sign up

Export Citation Format

Share Document