release probability
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 38)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
pp. JN-RM-0586-21
Author(s):  
Tanvi Butola ◽  
Theocharis Alvanos ◽  
Anika Hintze ◽  
Peter Koppensteiner ◽  
David Kleindienst ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Diana P. Benitez ◽  
Shenyi Jiang ◽  
Jack Wood ◽  
Rui Wang ◽  
Chloe M. Hall ◽  
...  

Abstract Background Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease.


2021 ◽  
Author(s):  
Philipe Mendonca ◽  
Erica Tagliatti ◽  
Helen Langley ◽  
Dimitrios Kotzadimitriou ◽  
Criseida Zamora-Chimal ◽  
...  

Abstract The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that and that synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses – the timing and the probability of neurotransmitter release.


Author(s):  
Dayton J Goodell ◽  
Jonathan E Tullis ◽  
K. Ulrich Bayer

The death associated protein kinase 1 (DAPK1) has recently been shown to have a physiological function in long-term depression (LTD) of glutamatergic synapses: Acute inhibition of DAPK1 blocked the LTD that is normally seen at the hippocampal CA1 synapse in young mice, and a pharmacogenetic combination approach showed that this specifically required DAPK1-mediated suppression of post-synaptic CaMKII binding to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B during LTD stimuli. Surprisingly, we found here that genetic deletion of DAPK1 (in DAPK1-/- mice) did not reduce LTD. Paired pulse facilitation experiments indicated a pre-synaptic compensation mechanism: in contrast to wild type mice, LTD stimuli in DAPK1-/- mice decreased pre-synaptic release probability. Basal synaptic strength was normal in young DAPK1-/- mice, but basal glutamate release probability was reduced, an effect that normalized with maturation.


2021 ◽  
Vol 118 (17) ◽  
pp. e2018653118
Author(s):  
Jae Hoon Jung ◽  
Lyndsey M. Kirk ◽  
Jennifer N. Bourne ◽  
Kristen M. Harris

Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.


2021 ◽  
Vol 7 (18) ◽  
pp. eabf3873
Author(s):  
Daniela Ivanova ◽  
Katharine L. Dobson ◽  
Akshada Gajbhiye ◽  
Elizabeth C. Davenport ◽  
Daniela Hacker ◽  
...  

Synaptic vesicle (SV) release probability (Pr), determines the steady state and plastic control of neurotransmitter release. However, how diversity in SV composition arises and regulates the Pr of individual SVs is not understood. We found that modulation of the copy number of the noncanonical vesicular SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor), vesicle-associated membrane protein 4 (VAMP4), on SVs is key for regulating Pr. Mechanistically, this is underpinned by its reduced ability to form an efficient SNARE complex with canonical plasma membrane SNAREs. VAMP4 has unusually high synaptic turnover and is selectively sorted to endolysosomes during activity-dependent bulk endocytosis. Disruption of endolysosomal trafficking and function markedly increased the abundance of VAMP4 in the SV pool and inhibited SV fusion. Together, our results unravel a new mechanism for generating SV heterogeneity and control of Pr through coupling of SV recycling to a major clearing system that regulates protein homeostasis.


2021 ◽  
Author(s):  
Tanvi Butola ◽  
Theocharis Alvanos ◽  
Anika Hintze ◽  
Peter Koppensteiner ◽  
David Kleindienst ◽  
...  

RIM-Binding Protein 2 (RIM-BP2) is a multi-domain protein of the presynaptic active zone (AZ). By binding to Rab-interacting protein (RIM), bassoon and voltage-gated Ca2+ channels (CaV), it is considered to be a central organizer of the topography of CaV and release sites of synaptic vesicles (SVs) at the AZ. Here, we investigated the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers with bushy cells of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked excitatory postsynaptic currents (EPSCs). Analysis of SV pool dynamics during high frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Augmenting Ca2+ influx by adding extracellular Ca2+ restored release probability but not EPSC amplitude, and uncovered an impairment of SV replenishment during train stimulation. Ultrastructural analysis by super-resolution light and electron microscopy revealed an impaired topography of presynaptic CaV and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in bushy cells of RIM-BP2-deficient mice in vivo.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Thomas P Jensen ◽  
Olga Kopach ◽  
James P Reynolds ◽  
Leonid P Savtchenko ◽  
Dmitri A Rusakov

Dendritic integration of synaptic inputs involves their increased electrotonic attenuation at distal dendrites, which can be counterbalanced by the increased synaptic receptor density. However, during network activity, the influence of individual synapses depends on their release fidelity, the dendritic distribution of which remains poorly understood. Here, we employed classical optical quantal analyses and a genetically encoded optical glutamate sensor in acute hippocampal slices of rats and mice to monitor glutamate release at CA3-CA1 synapses. We find that their release probability increases with greater distances from the soma. Similar-fidelity synapses tend to group together, whereas release probability shows no trends regarding the branch ends. Simulations with a realistic CA1 pyramidal cell hosting stochastic synapses suggest that the observed trends boost signal transfer fidelity, particularly at higher input frequencies. Because high-frequency bursting has been associated with learning, the release probability pattern we have found may play a key role in memory trace formation.


2021 ◽  
Vol 118 (3) ◽  
pp. e2022551118
Author(s):  
Ermis Pofantis ◽  
Erwin Neher ◽  
Thomas Dresbach

Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover’s role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called “superprimed vesicles” while “normally primed” ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.


Sign in / Sign up

Export Citation Format

Share Document