mass concentrations
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 169)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Hitoshi Matsui ◽  
Tatsuhiro Mori ◽  
Sho Ohata ◽  
Nobuhiro Moteki ◽  
Naga Oshima ◽  
...  

Abstract. Black carbon (BC) particles in the Arctic contribute to rapid warming of the Arctic by heating the atmosphere and snow and ice surfaces. Understanding the source contributions to Arctic BC is therefore important, but they are not well understood, especially those for atmospheric and snow radiative effects. Here we estimate simultaneously the source contributions of Arctic BC to near-surface and vertically integrated atmospheric BC mass concentrations (MBC_SRF and MBC_COL), BC deposition flux (MBC_DEP), and BC radiative effects at the top of the atmosphere and snow surface (REBC_TOA and REBC_SNOW), and show that the source contributions to these five variables are highly different. In our estimates, Siberia makes the largest contribution to MBC_SRF, MBC_DEP, and REBC_SNOW in the Arctic (defined as > 70° N), accounting for 70 %, 53 %, and 43 %, respectively. In contrast, Asia’s contributions to MBC_COL and REBC_TOA are largest, accounting for 38 % and 45 %, respectively. In addition, the contributions of biomass burning sources are larger (24−34 %) to MBC_DEP, REBC_TOA, and REBC_SNOW, which are highest from late spring to summer, and smaller (4.2−14 %) to MBC_SRF and MBC_COL, whose concentrations are highest from winter to spring. These differences in source contributions to these five variables are due to seasonal variations in BC emission, transport, and removal processes and solar radiation, as well as to differences in radiative effect efficiency (radiative effect per unit BC mass) among sources. Radiative effect efficiency varies by a factor of up to 4 among sources (1465−5439 W g–1) depending on lifetimes, mixing states, and heights of BC and seasonal variations of emissions and solar radiation. As a result, source contributions to radiative effects and mass concentrations (i.e., REBC_TOA and MBC_COL, respectively) are substantially different. The results of this study demonstrate the importance of considering differences in the source contributions of Arctic BC among mass concentrations, deposition, and atmospheric and snow radiative effects for accurate understanding of Arctic BC and its climate impacts.


2021 ◽  
Author(s):  
Otto Klemm ◽  
David F. Berger ◽  
Bettina Breuer ◽  
Sophia Buchholz ◽  
Laura Ehrnsperger ◽  
...  

<p>Although urban air pollution is on the decline in central Europe, it still causes several hundreds of thousands of premature deaths per year. The EU standards of atmospheric aerosol particle mass concentrations PM10 and PM2.5 (µg m<sup>-3</sup>) have not been exceeded anymore in Germany in 2020, yet there is a rather large uncertainty about the toxicity of particle number concentrations PN (cm<sup>-3</sup>), for which no legal limits are established. High PN concentrations are typically caused by the exhaust of motorized road vehicles. From 2019 through 2021, national lockdowns in response to the COVID-19 pandemic resulted in reduced human activity. The traffic intensity was heavily reduced, which should have led to an equally strong reaction of the urban aerosol particle concentrations, specifically the PN concentrations. For NO<sub>x</sub> and PM10, it has been shown for sections of central Europe that the decrease of urban concentrations was not as intense as expected by traffic reduction, because lockdowns coincided with periods of low wind speeds and poor atmospheric exchange conditions. We performed meteorological and air chemistry measurements with an instrumented cargo bicycle before, during, and after the COVID-19 lockdown periods in Münster, Germany. During each ride, two circular routes around the city center were realized, a high-traffic route and a low-traffic route. A complex picture emerged with varying impact of the day of the week, selection of route, meteorological conditions, and traffic intensity driving the PN and PM concentrations. Single-ride high-resolution analysis showed convincingly that the multitude of exhaust plumes from motorized vehicles exerted a strong impact on the PN concentrations. A relative importance analysis was performed on the entire dataset. According to the statistical analysis, PM10 responded most to the day of the week. Although the traffic intensity was also low on weekends, the impact of traffic on PM10 was rather low. Presumably, PM10 responded either to a specific traffic component such as commercial, low-duty vehicles, or to other business with weakly cycles such as construction activity. The meteorological conditions exert impact mostly through the relative humidity, which affects particle growth and reduction of the PN concentration. The role of the lockdowns was quite little overall. For future research, a more complete coverage of the seasons of the year is recommended as well as the inclusion of NO<sub>x</sub> measurements on board of the cargo bicycle. </p>


Author(s):  
Luka Pirker ◽  
Žiga Velkavrh ◽  
Agnese Osīte ◽  
Luka Drinovec ◽  
Griša Močnik ◽  
...  

AbstractFireworks pollute the local atmosphere with various air pollutants, which can pose a health hazard for the local population. Mass and number concentrations of aerosols were measured before, during, and after the 2016/2017 New Year event in Ljubljana, Slovenia. Our findings highlight the negative impact of fireworks on the environment. First, both the mass concentration of black carbon and the number of concentrations of nanoparticles between 80 and 150 nm increased shortly after midnight. Second, on Jan 1, 2017, there was an increase in the average daily mass concentrations of PM10 and PM2.5. Third, on this day, our devices also detected increased air pollution by Al, Ba, Sr, and Cu, that is, heavy metals usually associated with fireworks. Their Jan 1 mass concentrations were more than 10 times (and Sr more than 140 times) higher than their average daily mass concentrations from Jan 3 (when their mass concentrations returned to more normal levels) to Jan 31. We also found that pairwise correlations between nanoparticles, PM10, and black carbon are positive, strong, and statistically significant. Besides carbon, the chemical analysis of the collected particles revealed the presence of typical elements used in pyrotechnic devices and their significant positive correlation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoye Wu ◽  
Duanyang Liu ◽  
Tianliang Zhao ◽  
Yan Su ◽  
Bin Zhou

In order to investigate the chemical composition distributions and pollution characteristics of Total water-soluble inorganic ions (TWSII) in the rain period (Meiyu) in the East Asian summer monsoon season, including the impact of Meiyu on air pollution in the Yangtze River Delta, East China, the gaseous pollutant concentrations, the 9 sizes segregated particles, and water-soluble inorganic ions of aerosols were measured on the north shore of Taihu Lake from June 4 to July 5, 2016. Results show that the mass concentrations of atmospheric particulate matters (PM2.5 and PM10) and main gaseous pollutants (SO2, NO2, CO, and O3) decrease during the Meiyu period, with the largest decline in PM10 and the smallest in CO. TWSII in atmospheric particles are mainly concentrated in fine particles during the Meiyu period. The values of ρ (TWSII) for PM1.1, PM1.1–2.1, and PM2.1–10 before the Meiyu onset are generally greater than those during the Meiyu period. During the first pollution process, the ρ(TWSII) for PM1.1 and PM1.1–2.1 first increase to the peak values, and then decrease during the moderate rainfall period, when the ρ(TWSII) in PM2.1–10 increase to its maximum before the Meiyu onset. The mass concentrations for anions, cations, and total ions at different particle-size sections all exhibit bimodal distributions before and after the Meiyu onset. The mass concentration peaks at a particle size of 1.1–2.1 μm for fine particles, while at 5.8–9.0 μm (before the Meiyu onset) and 9.0–10.0 μm (during the Meiyu period) for coarse particles, respectively. The peak particle size for mass concentration of coarse particles moves toward larger sizes during the Meiyu period. The mass concentrations of SO42− at different particle-size sections show a bimodal distribution before the Meiyu onset and a multi-modal distribution during the Meiyu period. The mass concentrations of NO3− at different particle-size sections show a bimodal distribution before the Meiyu onset and a unimodal distribution during the Meiyu period. The mass concentrations of NH4+ at different particle-size sections present a bimodal distribution before and after the Meiyu onset, with the particle-size for peak concentrations distributing in 1.1–2.1 and 5.8–9.0 μm before the Meiyu onset, and 9.0–10.0 μm during the Meiyu period. The mean value of nitrogen oxidation ratio (NOR) is higher before the Meiyu onset than after, indicating that the secondary conversion of NO2 before the Meiyu onset is enhanced. The sulfur oxidation ratio (SOR) values are greater than NOR values, but the concentrations of NO2 in the same period during the Meiyu period are higher than those of SO2, which indicates that the secondary conversion of SO2 during the Meiyu period on the north bank of Taihu Lake is stronger than that of NO2. During the whole observation, the contribution of stationary sources mainly contributed to the atmospheric particulate matters during the Meiyu period. The contributions of vehicle exhaust and coal combustion to fine particles are more obviously affected by the changes in meteorological conditions during the Meiyu period, and the vehicle emissions contribute more to PM1.1–2.1 than to PM1.1.


2021 ◽  
Vol 21 (23) ◽  
pp. 18029-18053
Author(s):  
Cyril Brunner ◽  
Benjamin T. Brem ◽  
Martine Collaud Coen ◽  
Franz Conen ◽  
Maxime Hervo ◽  
...  

Abstract. The ice phase in mixed-phase clouds has a pivotal role in global precipitation formation as well as for Earth's radiative budget. Above 235 K, sparse particles with the special ability to initiate ice formation, ice-nucleating particles (INPs), are responsible for primary ice formation within these clouds. Mineral dust has been found to be one of the most abundant INPs in the atmosphere at temperatures colder than 258 K. However, the extent of the abundance and distribution of INPs remains largely unknown. To better constrain and quantify the impact of mineral dust on ice nucleation, we investigate the frequency of Saharan dust events (SDEs) and their contribution to the INP number concentration at 243 K and at a saturation ratio with respect to liquid water (Sw) of 1.04 at the High Altitude Research Station Jungfraujoch (JFJ; 3580 m a.s.l.) from February to December 2020. Using the single-scattering albedo Ångström exponent retrieved from a nephelometer and an Aethalometer, satellite-retrieved dust mass concentrations, simulated tropospheric residence times, and the attenuated backscatter signal from a ceilometer as proxies, we detected 26 SDEs, which in total contributed to 17 % of the time span analyzed. We found every SDE to show an increase in median INP concentrations compared to those of all non-SDE periods; however, they were not always statistically significant. Median INP concentrations of individual SDEs spread between 1.7 and 161 INP std L−1 and thus 2 orders of magnitude. In the entire period analyzed, 74.7 ± 0.2 % of all INPs were measured during SDEs. Based on satellite-retrieved dust mass concentrations, we argue that mineral dust is also present at JFJ outside of SDEs but at much lower concentrations, thus still contributing to the INP population. We estimate that 97 % of all INPs active in the immersion mode at 243 K and Sw=1.04 at JFJ are dust particles. Overall, we found INP number concentrations to follow a leptokurtic lognormal frequency distribution. We found the INP number concentrations during SDEs to correlate with the ceilometer backscatter signals from a ceilometer located 4.5 km north of JFJ and 1510 m lower in altitude, thus scanning the air masses at the same altitude as JFJ. Using the European ceilometer network allows us to study the atmospheric pathway of mineral dust plumes over a large domain, which we demonstrate in two case studies. These studies showed that mineral dust plumes form ice crystals at cirrus altitudes, which then sediment to lower altitudes. Upon sublimation in dryer air layers, the residual particles are left potentially pre-activated. Future improvements to the sampling lines of INP counters are required to study whether these particles are indeed pre-activated, leading to larger INP number concentrations than reported here.


2021 ◽  
Vol 937 (2) ◽  
pp. 022097
Author(s):  
Mikhail Sergeev ◽  
Dmitry Yermolin ◽  
Alexey Zavaliy ◽  
Galina Yermolina ◽  
Dmitry Rudoy

Abstract Studies have shown that grape pomace is a promising raw material for the functional drinks production with an increased phenols mass concentration. At the same time, the highest mass concentration of phenols was determined in red frape varities pomace. The highest mass concentrations of flovanols were found in white pomace, flavonols in muscat, phenolic acids in red pomace. The mass concentration of oligomeric forms in phenols does not differ significantly in all samples. The highest mass concentration of polymers in phenols is determined in the red pomace. The anthocyanin profile corresponded to the Western European ecological-geographical group grape varieties. Highest mass concentration was determined monoglycoside malvidin.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Chun Xiong ◽  
Shaocai Yu ◽  
Xue Chen ◽  
Zhen Li ◽  
Yibo Zhang ◽  
...  

Water soluble inorganic ions (WSIIs) are important components in PM2.5 and could strongly affect the acidity and hygroscopicity of PM2.5. In order to achieve the seasonal characteristics and determine the potential sources of WSIIs in PM2.5 in Hangzhou, online systems were used to measure hourly mass concentrations of WSIIs (SO42–, NO3–, NH4+, Cl–, Na+, K+, Ca2+ and Mg2+) as well as PM2.5, NO2 and SO2 at an urban site for one month each season (May, August, October, December) in 2017. Results showed that the hourly mass concentrations of PM2.5 during the whole campaign varied from 1 to 292 μg·m−3 with the mean of 56.03 μg·m−3. The mean mass concentration of WSIIs was 26.49 ± 20.78 μg·m−3, which contributed 48.28% to averaged PM2.5 mass. SNA (SO42–, NO3– and NH4+) were the most abundant ions in PM2.5 and on average, they comprised 41.57% of PM2.5 mass. PM2.5, NO2, SO2 and WSIIs showed higher mass concentrations in December, possibly due to higher energy consumption emissions, unfavorable meteorological factors (e.g., lower wind speed and temperature) and regional transport. Results from PCA models showed that secondary aerosols and vehicle emissions were the dominant sources of WSIIs in the observations. Our findings highlight the importance of stronger controls on precursor (e.g., SO2 and NO2) emissions in Hangzhou, and show that industrial areas should be controlled at local and regional scales in the future.


2021 ◽  
Author(s):  
Xiangli Wang ◽  
Peiyong Ni

Abstract Particles from marine diesel engine exhaust gas have caused serious air pollution and human health. Diesel particulate filter (DPF) can effectively reduce particle emissions from marine diesel engines. The distribution and regeneration of soot in DPF are two important issues. In this paper, a mathematical model of a marine DPF was built up and the particle trap process and the regeneration dynamics were simulated. The results show that the cake soot mass concentrations during trap process increase linearly with the increase of the exhaust gas flows while the depth soot mass concentrations firstly increase linearly and then keep constant. Soot is mainly concentrated in the front and rear portion of the filter and less soot is in the middle. The soot distribution in the cake and depth layer shows the unevenness during the trap and regeneration process. The initial soot loadings have great effects on pressure drops and soot mass concentrations before regeneration, but little effect after regeneration. The exhaust gas temperature heated to 850 K can achieve 94% efficiency for the DPF regeneration. There is no obvious difference in pressure drops and soot mass concentrations between fast heating and slow heating. The heating duration of exhaust gas has an important impact on DPF regeneration.


Sign in / Sign up

Export Citation Format

Share Document