effective heat
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 60)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
pp. 1-44

Abstract Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) which captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity can alone produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea-ice albedo and thermodynamic effects under CO2 forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.


2021 ◽  
Author(s):  
Tim Rohrschneider ◽  
Jonah Bloch-Johnson ◽  
Maria Rugenstein

Abstract. Atmosphere-Ocean General Circulation models (AOGCMs) are a necessary tool to understand climate dynamics on centennial timescales for which observations are scarce. We explore to which degree the temperature dependence of the climate radiative feedback influences the slow mode of the surface temperature response. We question whether long-term climate change is described by a single e-folding mode with a constant timescale which is commonly assumed to be independent of temperature or forcing and the evolution of time. To do so, we analyze AOGCM simulations which have an integration time of 1000 years and are forced by atmospheric CO2 concentrations ranging from 2 times (2X) to 8 times (8X) the preindustrial level. Our findings suggest that feedback temperature dependence strongly influences the equilibrium temperature response and adjustment timescale of the slow mode. The magnitude and timescale of the slow mode is approximately reproduced by a zero-dimensional energy balance model that has a constant effective heat capacity and incorporates a background feedback parameter and a coefficient for feedback temperature dependence. However, the effective heat capacity of the slow mode increases over time, which makes the adjustment timescale also time-dependent. The time-varying adjustment timescale can be approximated by a multiple timescale structure of the slow temperature response, or vice versa, a multiple timescale structure of the slow temperature response is described by a time-dependent timescale. The state-dependence and time-dependence of the adjustment timescale of long-term climate change puts into question common eigenmode decomposition with a fast and a slow timescale in the sense that the slow mode is not well described by a single linear e-folding mode with a constant timescale. We find that such an eigenmode decomposition is valid at a certain forcing level only, and an additional mode or a multiple mode and timescale structure of the slow adjustment is necessary to reproduce the details of AOGCM simulated long-term climate change.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1440
Author(s):  
Christian James ◽  
Ronald Dixon ◽  
Luke Talbot ◽  
Stephen J. James ◽  
Nicola Williams ◽  
...  

The dissemination of antibiotic resistance genes (ARGs) is a global health concern. This study identifies and critically reviews the published evidence on whether cooking (heating) food to eliminate bacterial contamination induces sufficient damage to the functionality of ARGs. Overall, the review found that there is evidence in the literature that Antimicrobial Resistant (AMR) bacteria are no more heat resistant than non-AMR bacteria. Consequently, recommended heat treatments sufficient to kill non-AMR bacteria in food (70 °C for at least 2 min, or equivalent) should be equally effective in killing AMR bacteria. The literature shows there are several mechanisms through which functional genes from AMR bacteria could theoretically persist in heat-treated food and be transferred to other bacteria. The literature search found sparce published evidence on whether ARGs may actually persist in food after effective heat treatments, and whether functional genes can be transferred to other bacteria. However, three publications have demonstrated that functional ARGs in plasmids may be capable of persisting in foods after effective heat treatments. Given the global impact of AMR, there is clearly a need for further practical research on this topic to provide sufficient evidence to fully assess whether there is a risk to human health from the persistence of functional ARGs in heat-treated and cooked foods.


Solar RRL ◽  
2021 ◽  
Author(s):  
Renzhong Deng ◽  
Chaorui Xue ◽  
Qing Chang ◽  
Jinlong Yang ◽  
Shengliang Hu

Polymer ◽  
2021 ◽  
pp. 124300
Author(s):  
Shuai Liu ◽  
Hong Wu ◽  
Shaoyun Guo ◽  
Jianhui Qiu

2021 ◽  
Vol 7 (3) ◽  
pp. 63
Author(s):  
John McDonald-Wharry

In late 2013, an open call for charcoal and biochar samples was distributed in an effort to compare a wide range of char samples by Raman spectroscopy. The samples contributed to this survey included: laboratory produced biochars, recent biochars produced in field conditions, and ancient char samples previously analysed by carbon dating. By using selected Raman measurements, the char samples could be ranked in terms of the degree of thermochemical alteration or extent of carbon nanostructural development. The Raman results for recently produced biomass chars were generally consistent with the conversion of amorphous carbon formed at lower temperatures into condensed, polyaromatic, and graphene-like carbon formed at higher temperatures. A number of parameters calculated from the Raman spectra could be used to estimate the effective heat treatment temperatures in the recently produced biochars. Other samples such as anthracite coal, tire pyrolysis carbon, and ancient chars departed from the trends observed in the recently produced biomass chars using this approach. In total, 45 samples were analysed by Raman spectroscopy for this survey. Ancient and buried char samples displayed higher intensities for features in the Raman spectra associated with amorphous carbon.


2021 ◽  
pp. 1420326X2110355
Author(s):  
Long Shi ◽  
Michael Y. L. Chew

Timber is one of the most frequently adopted combustible materials in the built environment. The thermal properties are the determining factors for assessing the fire risk in a building. The main thermal properties of timber and their char are reviewed, especially those temperature-dependent and moisture-dependent properties, including kinetic properties, ignition properties, thermal conductivity, specific heat capacity, effective heat of combustion and thermal diffusivity. The study has collected and summarized various thermal properties data and empirical models of hardwood and softwood with different mass percentages in cellulose, hemicellulose and lignin, as temperature increases. The average ignition temperature and effective heat of combustion of softwood are about 12.9% and 9.5% higher than those of hardwood, respectively. From most of the previous models, the thermal conductivity of timber char increases as temperature rises. Cellulose with a high density shows a higher thermal conductivity, but its impacts on the specific heat capacity are limited. Models to predict the main thermal properties of the hardwood, softwood and char are recommended. The collected data, together with those empirical models, can provide useful data resources and tools for the related fire risk assessments.


Sign in / Sign up

Export Citation Format

Share Document