separation bubbles
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 33)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 16 (2) ◽  
pp. 14-28
Author(s):  
A. M. Pavlenko ◽  
A. V. Bykov ◽  
B. Yu. Zanin ◽  
M. M. Katasonov

Investigations of the structure of the flow near the surface of a trapezoidal model of a small unmanned aerial vehicle were carried out when it enters a narrow turbulent wake. All experimental data were obtained in a wind tunnel at subsonic flow velocities. A feature of the work was that the study of the flow around the model was carried out at full-scale (flight) Reynolds numbers. Using the soot-oily visualization method, data on the features of the flow around the model were obtained, taking into account such factors as the angle of attack, the presence and absence of a source of external disturbances that generated a turbulent wake. The experiments were carried out in two flow regimes: at a zero angle of attack, when there are local separation bubbles on the wing, and at a large (supercritical) angle of attack of 18 degrees, when there is a global stall of the flow from the leading edge. It was shown that the turbulent wake has a significant effect on the nature of the flow near the model surface in both cases. Local separation bubbles gradually decrease in size with a decrease in the distance between the sources of disturbances and the wing. Large-scale vortices significantly decrease in geometrical dimensions and shift towards the side edges in the event of a global stall of the flow, thereby increasing the region of the attached flow on the model surface.


AIAA Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Clara De Santis ◽  
Pietro Catalano ◽  
Renato Tognaccini

2021 ◽  
Author(s):  
David Borgmann ◽  
Shirzad Hosseinverdi ◽  
Jesse C. Little ◽  
Hermann F. Fasel

2021 ◽  
Author(s):  
Qiang Liu ◽  
Will Ager ◽  
Cesare Hall ◽  
Andrew P. S. Wheeler

Abstract This paper investigates the surface boundary layer and wake development of a compressor blade at a range of low Reynolds number from 45000 to 120000. Experiments in a miniature linear compressor cascade facility have been performed with detailed surface pressure measurements and flow visualization to track variations in the separation bubble size. These have been combined with high resolution pneumatic pressure and hot wire probe traverses in the downstream wake. High fidelity DNS simulations have been completed on the same compressor blade section across the same range of operating conditions. The results show that large laminar separation bubbles exist on both blade surfaces. As Reynolds number increases, these separation bubbles shorten in length and reduce in thickness. Correspondingly, the downstream wake narrows, although the peak wake loss coefficient remains approximately constant. As the Reynolds number is increased from 45000 to 120000 the bubble length on the suction side reduced from 48% to 28% chord and on the pressure side reduced from 35% to 20% chord, while the loss coefficient reduced from 9% to 5%. The flow features are examined further within the high-fidelity computations, which reveal the dependence of the wake turbulence on the laminar separation bubbles. The separation bubbles are found to generate turbulent kinetic energy, which convects downstream to form the outer part of wake. As Re increases, a shorter bubble produces less turbulence in the outer part of the boundary layer leading to a narrower wake. However, the trailing edge separation is largely independent of Reynolds number, leading to the constant peak loss coefficient observed. The overall loss is shown to vary linearly with the total turbulence production, and this depends on the size of the separation bubbles. Overall, this research provides new insight into the connection between the blade surface flow field and the wake characteristics at low Reynolds number. The findings suggest that changes that minimize the extent of the blade separation bubbles could provide significant improvements to both the steady and unsteady properties of the wake.


Author(s):  
Sedem Kumahor ◽  
Xingjun Fang ◽  
Mark F. Tachie

Abstract Separating and reattaching turbulent flows induced by a forward-facing step submerged in thick oncoming turbulent boundary layers (TBL) developed over smooth and rough upstream walls were investigated using time-resolved particle image velocimetry. The examined upstream walls resulted in smooth, transitionally rough and fully rough wall conditions. The upstream boundary layer thicknesses were 4.3 and 6.7 times the step height in the smooth and rough wall cases, respectively. The Reynolds number based on the step height and free-stream velocity was 7800. The effects of upstream wall roughness on the mean flow characteristics, Reynolds stresses defined in both Cartesian and curvilinear coordinate systems as well as the unsteadiness of the turbulent separation bubbles were critically examined. The results show that upstream wall roughness increases the boundary layer thickness and turbulence intensity and consequently, promotes early mean flow reattachment over the step. Distinct regions of significantly elevated vertical Reynolds normal stress and Reynolds shear stress were observed upstream of the step in the fully rough wall case compared to the smooth wall case. Proper orthogonal decomposition (POD) and the reverse flow area over the step were employed to investigate the unsteadiness of the separation bubbles. The first POD mode coefficient and the reverse flow area over the step were well correlated and exhibited the same dominant frequency.


Sign in / Sign up

Export Citation Format

Share Document