lactic acidosis
Recently Published Documents


TOTAL DOCUMENTS

2847
(FIVE YEARS 487)

H-INDEX

94
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
ChangZhi Liu ◽  
WeiRan Zhou ◽  
QuanE Liu ◽  
ZaiXin Peng

Abstract Background Mitochondrial ribosomal protein S2 (MRPS2) gene mutation, which is related to severe hypoglycemia and lactic acidosis, is rarely reported globally. Case presentation We report a case of a new MRPS2 gene mutation in a Chinese girl who presented with hypoglycemia and lactic acidosis. A homozygous C.412C > G variant that could cause complex oxidative phosphorylation deficiency and had not been reported before was identified. The clinical manifestations included recurrent vomiting, hypoglycemia, lactic acidosis, sensorineural hearing loss, and gall bladder calculi. Hypoglycemia and lactic acidosis improved after the administration of sugary liquid and supportive treatments. Conclusions Recurrent hypoglycemia with lactic acidosis and sensorineural hearing loss should lead to suspicion of mitochondrial defects and the early refinement of genetic tests.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rahel S. König ◽  
Werner C. Albrich ◽  
Christian R. Kahlert ◽  
Lina Samira Bahr ◽  
Ulrike Löber ◽  
...  

Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.


2022 ◽  
Author(s):  
Haorong Li ◽  
Martine Uittenbogaard ◽  
Ryan Navarro ◽  
Mustafa Ahmed ◽  
Andrea Gropman ◽  
...  

MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic mechanism of MELAS remains enigmatic due to the exceptional clinical...


2022 ◽  
Vol 50 (1) ◽  
pp. 030006052110677
Author(s):  
Chunhua Wang ◽  
Zanmei Lv ◽  
Yanwei Zhang

Type B lactic acidosis is a rare complication of non-tissue perfusion abnormalities caused by solid tumors or hematologic malignancies. Herein, we present the case of a 42-year-old man with type B lactic acidosis and hypoglycemia who was found to have a diffuse large B-cell lymphoma. The cause of lactic acidosis and/or hypoglycemia is thought to be the Warburg effect, which is when the metabolic rate of a rapidly growing malignant tumor is very high and dominated by glycolysis. Systemic damage from type B lactic acidosis can occur when the increased rate of glycolysis exceeds the normal muscle and liver lactic acid clearance rate. The Warburg effect is a rare but serious condition that needs to be recognized, not only in diffuse large B-cell lymphoma, but also in other malignancies. The prognosis of lactic acidosis in patients with malignant tumors is very poor. Currently, effective chemotherapy seems to be the only hope for survival.


Author(s):  
Kelath Murali Manoj ◽  
Vijay Nirusimhan ◽  
Abhinav Parashar ◽  
Jesucastin Edward ◽  
Daniel Andrew Gideon

2021 ◽  
Vol 52 (4) ◽  
Author(s):  
Alissa B. Mones ◽  
Erika J. Gruber ◽  
Craig A. Harms ◽  
Catherine M.F. Lohmann ◽  
Kenneth J. Lohmann ◽  
...  

Author(s):  
Gerrit Stuivenberg ◽  
Brendan Daisley ◽  
Polycronis Akouris ◽  
Gregor Reid

AbstractRecent studies suggest histamine and d-lactate may negatively impact host health. As excess histamine is deleterious to the host, the identification of bacterial producers has contributed to concerns over the consumption of probiotics or live microorganisms in fermented food items. Some probiotic products have been suspected of inducing d-lactic-acidosis; an illness associated with neurocognitive symptoms such as ataxia. The goals of the present study were to test the in vitro production of histamine and d-lactate by a 24-strain daily synbiotic and to outline methods that others can use to test for their production. Using enzymatic based assays, no significant production of histamine was observed compared to controls (P > 0.05), while d-lactate production was comparable to a commercially available probiotic with no associated health risk. These assays provide a means to add to the safety profile of synbiotic and probiotic products.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Adam ◽  
Léa Paolini ◽  
Naïg Gueguen ◽  
Guillaume Mabilleau ◽  
Laurence Preisser ◽  
...  

AbstractLactic acidosis, the extracellular accumulation of lactate and protons, is a consequence of increased glycolysis triggered by insufficient oxygen supply to tissues. Macrophages are able to differentiate from monocytes under such acidotic conditions, and remain active in order to resolve the underlying injury. Here we show that, in lactic acidosis, human monocytes differentiating into macrophages are characterized by depolarized mitochondria, transient reduction of mitochondrial mass due to mitophagy, and a significant decrease in nutrient absorption. These metabolic changes, resembling pseudostarvation, result from the low extracellular pH rather than from the lactosis component, and render these cells dependent on autophagy for survival. Meanwhile, acetoacetate, a natural metabolite produced by the liver, is utilized by monocytes/macrophages as an alternative fuel to mitigate lactic acidosis-induced pseudostarvation, as evidenced by retained mitochondrial integrity and function, retained nutrient uptake, and survival without the need of autophagy. Our results thus show that acetoacetate may increase tissue tolerance to sustained lactic acidosis.


Sign in / Sign up

Export Citation Format

Share Document