radio architecture
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Gavin Megson ◽  
Sabyasachi Gupta ◽  
Syed Muhammad Hashir ◽  
Ehsan Aryafar ◽  
Joseph Camp

Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by self-interference (SI). This is because a FD node’s transmitting signal generates significant interference to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain. This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can change both the amplitude and phase of the wireless signal and send different data streams from each antenna element. Our goal in this paper is to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups. To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna FD solution to a hybrid beamforming architecture and compare the corresponding performance metrics leveraging a fully programmable many-antenna testbed and collecting over-the-air wireless channel data. We show that SI cancellation through beam design on a hybrid beamforming radio architecture can achieve capacity within 16% of that of a fully digital architecture. The performance gap further shrinks with a higher number of quantization bits in the hybrid beamforming system.


Author(s):  
Nhat Tien Nguyen ◽  
Thien T. T. Le ◽  
Hong Nhu Nguyen ◽  
Miroslav Voznak ◽  
Jaroslav Zdralek

Author(s):  
Juan Aranda ◽  
Mario Schölzel ◽  
Diego Mendez ◽  
Henry Carrillo

Traditionally, sophisticate power-aware wake-up techniques have been employed to achieve energy efficiency in Wireless Sensor Networks (WSNs), such as low-duty cycling protocols using a single radio architecture. These protocols achieve good results regarding energy savings, but they suffer from idle-listening and overhearing issues, that make them not reliable for most ultra-low power demanding applications, especially, those deployed in hostile and unattended environments. Currently, Wake-up Radio Receivers (WuRx) based protocols, under a dual-radio architecture and always-on operation, are emerging as a solution to overcome these issues, promising higher energy consumption reduction compared to classic wake-up protocols. By combining different transceivers and reporting protocols regarding energy efficiency, multimodality in WSNs is achieved. This paper presents an energy consumption estimation model that considers the behavior and performance of wakeup protocols based on WuRx in multi-hop communications under several cases instead of traditional low-duty cycling schemes. The results show that the WuRx with addressing does not significantly reduce the energy consumption compared to WuRx without addressing. In some cases, classic low-duty cycling protocols outperform WuRx based protocols, but in most cases, it is contrariwise, giving a strong motivation for considering multi-modal approaches in WSNs.


Sign in / Sign up

Export Citation Format

Share Document