molecular approaches
Recently Published Documents


TOTAL DOCUMENTS

1955
(FIVE YEARS 491)

H-INDEX

78
(FIVE YEARS 9)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Andrea Lombardo ◽  
Giuseppina Brocherel ◽  
Carla Donnini ◽  
Gianluca Fichi ◽  
Alessia Mariacher ◽  
...  

AbstractBaylisascaris procyonis is a nematode parasite of the raccoon (Procyon lotor), and it can be responsible for a severe form of larva migrans in humans. This parasite has been reported from many countries all over the world, after translocation of its natural host outside its native geographic range, North America. In the period between January and August 2021, 21 raccoons were cage-trapped and euthanized in Tuscany (Central Italy), in the context of a plan aimed at eradicating a reproductive population of this non-native species. All the animals were submitted for necroscopic examination. Adult ascariids were found in the small intestine of seven raccoons (prevalence 33.3%). Parasites have been identified as B. procyonis based on both morphometric and molecular approaches. The aim of the present article is to report the first finding of this zoonotic parasite from Italy, highlighting the sanitary risks linked to the introduction of alien vertebrate species in new areas. Graphical Abstract


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Gardette R. Valmonte-Cortes ◽  
Sonia T. Lilly ◽  
Michael N. Pearson ◽  
Colleen M. Higgins ◽  
Robin M. MacDiarmid

To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.


Parasitology ◽  
2022 ◽  
pp. 1-16
Author(s):  
Anna Faltýnková ◽  
Olena Kudlai ◽  
Camila Pantoja ◽  
Galina Yakovleva ◽  
Daria Lebedeva

Abstract DNA sequence data became an integral part of species characterization and identification. Still, specimens associated with a particular DNA sequence must be identified by the use of traditional morphology-based analysis and correct linking of sequence and identification must be ensured. Only a small part of DNA sequences of the genus Diplostomum (Diplostomidae) is based on adult isolates which are essential for accurate identification. In this study, we provide species identification with an aid of morphological and molecular (cox1, ITS-5.8S-ITS2 and 28S) characterization of adults of Diplostomum baeri Dubois, 1937 from naturally infected Larus canus Linnaeus in Karelia, Russia. Furthermore, we reveal that the DNA sequences of our isolates of D. baeri are identical with those of the lineage Diplostomum sp. clade Q , while other sequences labelled as the ‘D. baeri’ complex do not represent lineages of D. baeri. Our new material of cercariae from Radix balthica (Linnaeus) in Ireland is also linked to Diplostomum sp. clade Q. We reveal that D. baeri is widely distributed in Europe; as first intermediate hosts lymnaeid snails (Radix auricularia (Linnaeus), R. balthica) are used; metacercariae occur in eye lens of cyprinid fishes. In light of the convoluted taxonomy of D. baeri and other Diplostomum spp., we extend the recommendations of Blasco-Costa et al. (2016, Systematic Parasitology 93, 295–306) for the ‘best practice’ in molecular approaches to trematode systematics. The current study is another step in elucidating the species spectrum of Diplostomum based on integrative taxonomy with well-described morphology of adults linked to sequences.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 241
Author(s):  
Ana López-Moreno ◽  
Ángel Ruiz-Moreno ◽  
Jesús Pardo-Cacho ◽  
Klara Cerk ◽  
Alfonso Torres-Sánchez ◽  
...  

Integrated data from molecular and improved culturomics studies might offer holistic insights on gut microbiome dysbiosis triggered by xenobiotics, such as obesity and metabolic disorders. Bisphenol A (BPA), a dietary xenobiotic obesogen, was chosen for a directed culturing approach using microbiota specimens from 46 children with obesity and normal-weight profiles. In parallel, a complementary molecular analysis was carried out to estimate the BPA metabolising capacities. Firstly, catalogues of 237 BPA directed-cultured microorganisms were isolated using five selected media and several BPA treatments and conditions. Taxa from Firmicutes, Proteobacteria, and Actinobacteria were the most abundant in normal-weight and overweight/obese children, with species belonging to the genera Enterococcus, Escherichia, Staphylococcus, Bacillus, and Clostridium. Secondly, the representative isolated taxa from normal-weight vs. overweight/obese were grouped as BPA biodegrader, tolerant, or resistant bacteria, according to the presence of genes encoding BPA enzymes in their whole genome sequences. Remarkably, the presence of sporobiota and concretely Bacillus spp. showed the higher BPA biodegradation potential in overweight/obese group compared to normal-weight, which could drive a relevant role in obesity and metabolic dysbiosis triggered by these xenobiotics.


2022 ◽  
Author(s):  
Stephen Balinandi ◽  
Juliette Hayer ◽  
Harindranath Cholleti ◽  
Julius Lutwama ◽  
Michelle Wille ◽  
...  

The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunyavirus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were novel and tetantively named as Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report a broad range of viruses including novel ones in the blood of cattle likely as reservoir hosts for emergence of novel viruses with serious public health implications.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang Shen ◽  
Alessandro Luchetti ◽  
Giselle Fernandes ◽  
Won Do Heo ◽  
Alcino J. Silva

AbstractSystems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.


2022 ◽  
Vol 14 (1) ◽  
pp. 490
Author(s):  
Alka Sagar ◽  
Shalini Rai ◽  
Noshin Ilyas ◽  
R. Z. Sayyed ◽  
Ahmad I. Al-Turki ◽  
...  

Agriculture is the best foundation for human livelihoods, and, in this respect, crop production has been forced to adopt sustainable farming practices. However, soil salinity severely affects crop growth, the degradation of soil quality, and fertility in many countries of the world. This results in the loss of profitability, the growth of agricultural yields, and the step-by-step decline of the soil nutrient content. Thus, researchers have focused on searching for halotolerant and plant growth-promoting bacteria (PGPB) to increase soil fertility and productivity. The beneficial bacteria are frequently connected with the plant rhizosphere and can alleviate plant growth under salinity stress through direct or indirect mechanisms. In this context, PGPB have attained a unique position. The responses include an increased rate of photosynthesis, high production of antioxidants, osmolyte accumulation, decreased Na+ ions, maintenance of the water balance, a high germination rate, and well-developed root and shoot elongation under salt-stress conditions. Therefore, the use of PGPB as bioformulations under salinity stress has been an emerging research avenue for the last few years, and applications of biopesticides and biofertilizers are being considered as alternative tools for sustainable agriculture, as they are ecofriendly and minimize all kinds of stresses. Halotolerant PGPB possess greater potential for use in salinity-affected soil as sustainable bioinoculants and for the bioremediation of salt-affected soil.


Author(s):  
Dhriti Kapoor ◽  
Priyanka Sharma ◽  
Upma Arora ◽  
Vandana Gautam ◽  
Savita Bhardwaj ◽  
...  

2022 ◽  
pp. 465-492
Author(s):  
Lovejot Kaur ◽  
M.R. Meena ◽  
Sangram K. Lenka ◽  
C. Appunu ◽  
Ravinder Kumar ◽  
...  

2022 ◽  
pp. 159-190
Author(s):  
Lisa Campbell ◽  
Chetan C. Gaonkar ◽  
Darren W. Henrichs

Sign in / Sign up

Export Citation Format

Share Document