high throughput sequencing
Recently Published Documents


TOTAL DOCUMENTS

6922
(FIVE YEARS 3922)

H-INDEX

124
(FIVE YEARS 19)

2025 ◽  
Vol 77 (11) ◽  
pp. 6589-2025
Author(s):  
ALEKSANDRA GIZA ◽  
EWELINA IWAN ◽  
ARKADIUSZ BOMBA ◽  
DARIUSZ WASYL

Sequencing can provide genomic characterisation of a specific organism, as well as of a whole environmental or clinical sample. High Throughput Sequencing (HTS) makes it possible to generate an enormous amount of genomic data at gradually decreasing costs and almost in real-time. HTS is used, among others, in medicine, veterinary medicine, microbiology, virology and epidemiology. The paper presents practical aspects of the HTS technology. It describes generations of sequencing, which vary in throughput, read length, accuracy and costs ̶ and thus are used for different applications. The stages of HTS, as well as their purposes and pitfalls, are presented: extraction of the genetic material, library preparation, sequencing and data processing. For success of the whole process, all stages need to follow strict quality control measurements. Choosing the right sequencing platform, proper sample and library preparation procedures, as well as adequate bioinformatic tools are crucial for high quality results.


2022 ◽  
Vol 13 (1) ◽  
pp. 129-139
Author(s):  
Yoki Hirakawa ◽  
Sadaomi Sugimoto ◽  
Norimasa Tsuji ◽  
Takeshi Inamoto ◽  
Hiroshi Maeda

Enterococcus faecalis is an etiological agent of endodontic infections. The present study was performed to investigate the gene profiles of E. faecalis induced by type I collagen stimulation. E. faecalis ATCC 19433 was cultivated with [collagen (+)] or without type I collagen [collagen (−)], and transcriptome analysis was performed using high-throughput sequencing technology. A total of 3.6 gb of information was obtained by sequence analysis and 77 differentially expressed genes (DEGs) between the two culture conditions were identified. Among the 77 DEGs, 35 genes were upregulated in collagen (+) E. faecalis, whereas 42 genes were downregulated. Gene Ontology (GO) enrichment analysis was performed and 11 GO terms, including metalloendopeptidase activity (GO:0004222) and two related GO terms (GO:0031012, GO:0044421), were significantly enriched in the set of upregulated genes. We focused on an upregulated DEG belonging to the matrixin metalloprotease gene family, and matrix metalloprotease (MMP) activities of the bacterial cell were examined. The generic MMP, MMP-8, and MMP-9 activities of collagen (+) E. faecalis were significantly higher than those of collagen (−) E. faecalis. These results suggested that contact with type I collagen may alter the gene expression profile of E. faecalis, and upregulation of metalloprotease genes may result in enhanced MMP activities in E. faecalis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ligia Pereira Castro ◽  
Danilo Batista-Vieira ◽  
Tiago Antonio de Souza ◽  
Ana Rafaela de Souza Timoteo ◽  
Jessica Dayanna Landivar Coutinho ◽  
...  

Xeroderma pigmentosum (XP) is a rare genetic condition in which exposure to sunlight leads to a high tumor incidence due to defective DNA repair machinery. Herein, we investigated seven patients clinically diagnosed with XP living in a small city, Montanhas (Rio Grande do Norte), in the Northeast region of Brazil. We performed high-throughput sequencing and, surprisingly, identified two different mutated genes. Six patients carry a novel homozygote mutation in the POLH/XPV gene, c.672_673insT (p.Leu225Serfs*33), while one patient carries a homozygote mutation in the XPC gene, c.2251-1G>C. This latter mutation was previously described in Southeastern Africa (Comoro Island and Mozambique), Pakistan, and in a high incidence in Brazil. The XP-C patient had the first symptoms before the first year of life with aggressive ophthalmologic tumor progression and a melanoma onset at 7 years of age. The XP-V patients presented a milder phenotype with later onset of the disorder (mean age of 16 years old), and one of the six XP-V patients developed melanoma at 72 years. The photoprotection is minimal among them, mainly for the XP-V patients. The differences in the disease severity between XP-C (more aggressive) and XP-V (milder) patients are obvious and point to the major role of photoprotection in the XPs. We estimate that the incidence of XP patients at Montanhas can be higher, but with no diagnosis, due to poor health assistance. Patients still suffer from the stigmatization of the condition, impairing diagnosis, education for sun protection, and medical care.


Plant Disease ◽  
2022 ◽  
Author(s):  
Rochelle de Bruyn ◽  
Rachelle Bester ◽  
Glynnis Cook ◽  
Chanel Steyn ◽  
Johannes Hendrik Jacobus Breytenbach ◽  
...  

Citrus virus A (CiVA), a novel negative-sense single-stranded RNA virus assigned to the species Coguvirus eburi in the genus Coguvirus, was detected in South Africa with the use of high-throughput sequencing (HTS) after its initial discovery in Italy. CiVA is closely related to citrus concave gum-associated virus (CCGaV), recently assigned to the species Citrus coguvirus. Disease association with CiVA is however incomplete. CiVA was detected in grapefruit (Citrus paradisi Macf.), sweet orange (C. sinensis (L.) Osb.) and clementine (C. reticulata Blanco) in South Africa and a survey to determine the distribution, symptom association and genetic diversity was conducted in three provinces and seven citrus production regions. The virus was detected in ‘Delta’ Valencia trees in six citrus production regions and a fruit rind symptom was often observed on CiVA-positive trees. Additionally, grapefruit showing symptoms of citrus impietratura disease were positive for CiVA. This virus was primarily detected in older orchards that were established prior to the application of shoot tip grafting for virus elimination in the South African Citrus Improvement Scheme. The three viral encoded genes of CiVA isolates from each cultivar and region were sequenced to investigate sequence diversity. Genetic differences were detected between the ‘Delta’ Valencia, grapefruit and clementine samples, with greater sequence variation observed with the nucleocapsid protein (NP) compared to the RNA-dependent RNA polymerase (RdRp) and the movement protein (MP). A real-time detection assay, targeting the RdRp, was developed to simultaneously detect citrus infecting coguviruses, CiVA and CCGaV, using a dual priming reverse primer to improve PCR specificity.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Kamran Hosseini ◽  
Maryam Ranjbar ◽  
Abbas Pirpour Tazehkand ◽  
Parina Asgharian ◽  
Soheila Montazersaheb ◽  
...  

AbstractClinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers’ diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 226
Author(s):  
Marwa Hanafi ◽  
Wei Rong ◽  
Lucie Tamisier ◽  
Chadi Berhal ◽  
Nicolas Roux ◽  
...  

: The banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus that infects Musa spp. and has a very wide geographical distribution. The current BanMMV indexing process for an accession requires the testing of no less than four plants cultivated in a greenhouse for at least 6 months and causes a significant delay for the distribution of the germplasm. We evaluated the sensitivity of different protocols for BanMMV detection from in vitro plants to accelerate the testing process. We first used corm tissues from 137 in vitro plants and obtained a diagnostic sensitivity (DSE) of only 61% when testing four plants per accession. After thermotherapy was carried out to eliminate BanMMV infection, the meristem was recovered and further grown in vitro. The same protocol was evaluated in parallel on the corm tissue surrounding the meristem, as a rapid screening to evaluate virus therapy success, and was compared to the results obtained following the standard protocol. The obtained results showed 28% false negatives when conducting testing from corm tissues, making this protocol unsuitable in routine processes. Furthermore, RT-PCR and high-throughput sequencing (HTS) tests were applied on tissues from the base (n = 39) and the leaves (n = 36). For RT-PCR, the average DSE per sample reached 65% from either the base or leaves. HTS was applied on 36 samples and yielded 100% diagnostic specificity (DSP) and 100% DSE, whatever the sampled tissue, allowing the identification of a new Betaflexiviridae species infecting Musa. These results suggest that a reliable diagnostic of BanMMV from in vitro plants using RT-PCR or HTS technologies might represent an efficient alternative for testing after greenhouse cultivation.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Malyaj Prajapati ◽  
Aakansha Manav ◽  
Jitender Singh ◽  
Pankaj Kumar ◽  
Amit Kumar ◽  
...  

Garlic (Allium sativum L.) plants exhibiting mosaics, deformation, and yellow stripes symptoms were identified in Meerut City, Uttar Pradesh, India. To investigate the viruses in the garlic samples, the method of high-throughput sequencing (HTS) was used. Complete genome of the garlic virus E (GarV-E) isolate (NCBI accession No. MW925710) was retrieved. The virus complete genome comprises 8450 nucleotides (nts), excluding the poly (A) tail at the 3′ terminus, with 5′ and 3′ untranslated regions (UTRs) of 99 and 384 nts, respectively, and ORFs encoding replicase with a conserved motif for RNA-dependent RNA polymerase (RdRP), TGB1, TGB2, TGB3, serine-rich protein, coat protein, and nucleic acid binding protein (NABP). The sequence homology shared 83.49–90.40% and 87.48–92.87% with those of GarV-E isolates available in NCBI at the nucleotide and amino acid levels, respectively. Phylogenetic analysis showed a close relationship of this isolate from India (MW925710) with GarV-E isolate YH (AJ292230) from Zhejiang, China. The presence of GarV-E was also confirmed by RT-PCR. The present study is the first report of GarV-E in garlic cultivar Yamuna Safed-3 grown in northern India. However, further studies are needed to confirm its role in symptom development, nationwide distribution, genetic diversity, and potential yield loss to the garlic in India.


2022 ◽  
Vol 23 (2) ◽  
pp. 900
Author(s):  
Taja Jeseničnik ◽  
Nataša Štajner ◽  
Sebastjan Radišek ◽  
Ajay Kumar Mishra ◽  
Katarina Košmelj ◽  
...  

Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant—fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5′ RLM-RACE approach.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qingping Ma ◽  
Laichao Song ◽  
Zhanhai Niu ◽  
Jingshan Li ◽  
Yu Wang ◽  
...  

“Huangjinya” is a light-sensitive albino variety and is widely cultivated in China. It has been proved that red light could promote the vegetable growth of plants. However, the mechanism of “Huangjinya” in response to a red light is unclear. This study used high-throughput sequencing technology to analyze the transcriptome of tender shoots of “Huangjinya” under the white and red light supplement conditions. At the same time, liquid chromatography tandem mass spectrometry (LC-MS) was used to analyze metabolite changes under different light conditions. Transcriptome analysis revealed that a total of 174 differentially expressed genes (DEGs) were identified after the red light supplement. Kyoto encyclopedia of genes and genomes (KEGG) classification indicated that amino acid metabolism enriched the most DEGs. In addition, two phenylpropanoid metabolism-related genes and five glutathione S-transferase genes (CsGSTs) were found to be expressed differently. Metabolome analysis revealed that 193 differential metabolites were obtained. Being the same as transcriptome analysis, most differential metabolites were enriched in amino acids, sweet and umami tasting amino acids were increased, and bitter-tasting amino acids were decreased after the red light supplement. In summary, red light supplementary treatment may be propitious to the quality of “Huangjinya” due to its regulatory effect on amino acid metabolism. Also, CsGSTs involved phenylpropanoid metabolism contributed to tea quality changes in “Huangjinya.”


2022 ◽  
Vol 12 ◽  
Author(s):  
Steven D. Hicks ◽  
Alexandra Confair ◽  
Kaitlyn Warren ◽  
Desirae Chandran

There is emerging evidence that non-coding RNAs (ncRNAs) within maternal breast milk (MBM) impart unique metabolic and immunologic effects on developing infants. Most studies examining ncRNAs in MBM have focused on microRNAs. It remains unclear whether microRNA levels are related to other ncRNAs, or whether they are impacted by maternal characteristics. This longitudinal cohort study examined 503 MBM samples from 192 mothers to: 1) identify the most abundant ncRNAs in MBM; 2) examine the impact of milk maturity on ncRNAs; and 3) determine whether maternal characteristics affect ncRNAs. MBM was collected at 0, 1, and 4 months post-delivery. High throughput sequencing quantified ncRNAs within the lipid fraction. There were 3069 ncRNAs and 238 microRNAs with consistent MBM presence (≥10 reads in ≥10% samples). Levels of 17 ncRNAs and 11 microRNAs accounted for 80% of the total RNA content. Most abundant microRNAs displayed relationships ([R]>0.2, adj p< 0.05) with abundant ncRNAs. A large proportion of ncRNAs (1269/3069; 41%) and microRNAs (206/238; 86%) were affected by MBM maturity. The majority of microRNAs (111/206; 54%) increased from 0-4 months. Few ncRNAs and microRNAs were affected (adj p < 0.05) by maternal age, race, parity, body mass index, gestational diabetes, or collection time. However, nearly half of abundant microRNAs (4/11) were impacted by diet. To our knowledge this is the largest study of MBM ncRNAs, and the first to demonstrate a relationship between MBM microRNAs and maternal diet. Such knowledge could guide nutritional interventions aimed at optimizing metabolic and immunologic microRNA profiles within MBM.


Sign in / Sign up

Export Citation Format

Share Document