anaerobic soil disinfestation
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260394
Author(s):  
Abdur R. Khan ◽  
Wisnu A. Wicaksono ◽  
Natalia J. Ott ◽  
Amisha T. Poret-Peterson ◽  
Greg T. Browne

Successive orchard plantings of almond and other Prunus species exhibit reduced growth and yield in many California soils. This phenomenon, known as Prunus replant disease (PRD), can be prevented by preplant soil fumigation or anaerobic soil disinfestation, but its etiology is poorly understood and its incidence and severity are hard to predict. We report here on relationships among physicochemical variables, microbial community structure, and PRD induction in 25 diverse replant soils from California. In a greenhouse bioassay, soil was considered to be “PRD-inducing” when growth of peach seedlings in it was significantly increased by preplant fumigation and pasteurization, compared to an untreated control. PRD was induced in 18 of the 25 soils, and PRD severity correlated positively with soil exchangeable-K, pH, %clay, total %N, and electrical conductivity. The structure of bacterial, fungal, and oomycete communities differed significantly between the PRD-inducing and non-inducing soils, based on PERMANOVA of Bray Curtis dissimilarities. Bacterial class MB-A2-108 of phylum Actinobacteria had high relative abundances among PRD-inducing soils, while Bacteroidia were relatively abundant among non-inducing soils. Among fungi, many ASVs classified only to kingdom level were relatively abundant among PRD-inducing soils whereas ASVs of Trichoderma were relatively abundant among non-inducing soils. Random forest classification effectively discriminated between PRD-inducing and non-inducing soils, revealing many bacterial ASVs with high explanatory values. Random forest regression effectively accounted for PRD severity, with soil exchangeable-K and pH having high predictive value. Our work revealed several biotic and abiotic variables worthy of further examination in PRD etiology.


Author(s):  
Oleg Daugovish ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Margherita Zavatta

Anaerobic soil disinfestation (ASD) has been optimized and adopted as an organic alternative to chemical fumigation by strawberry growers in California. The ASD process relies on mixing labile carbon sources into the soil to generate chemical, physical, and microbiological changes aiding suppression of the soil-borne pathogens and enhancing fruit production. Continued ASD adoption is hindered by the increasing cost of rice bran, currently the most widely used carbon source. To address this need and to find suitable and economical alternative carbon sources, we conducted field evaluations of locally produced or sourced plant-based products. ASD with incorporated grass-sod clippings spent grain and coffee grounds from one supplier provided a 47% to 83% increase in fruit yields compared to untreated soil, but coffee grounds from a different supplier decreased strawberry yields. Carbon, nitrogen, and their ratios had important impacts on the efficacy of ASD with coffee grounds and grape pomace. ASD with wheat midds at 20 t/ha provided strawberry yields similar to chloropicrin-fumigated soil while substituting 30% of rice bran carbon rate with on-site grown cereal cover crop biomass resulted in yields similar to the full rate of rice bran but at a reduced cost. As we continue exploring cost-effective methods of soil disinfestation, we utilize ASD integrated with other pest management tools, such as the use of resistant cultivars and crop rotation for sustainable production.


2021 ◽  
Vol 5 ◽  
Author(s):  
Keagan J. Swilling ◽  
Utsala Shrestha ◽  
Bonnie H. Ownley ◽  
Kimberly D. Gwinn ◽  
David M. Butler

Volatile fatty acids (VFAs), such as acetic and n-butyric acid, released during anaerobic decomposition of organic soil amendments during anaerobic soil disinfestation (ASD) likely play a role in soilborne plant pathogen inoculum suppression. However, research is limited on the direct effects of soil VFA exposure on fungal plant pathogen inoculum, effects on pathogen antagonists such as Trichoderma spp., and the role of soil microbial VFA metabolism on reducing exposure effects. The present study addresses these limitations through a series of studies evaluating the effects of VFA (acetic or n-butyric acid), VFA concentration (4, 8, or 16 mmol/kg soil), soil sterilization by autoclaving, and soil amendment on the viability of Athelia rolfsii (Sclerotium rolfsii) sclerotia post VFA exposure, and soil populations of Trichoderma spp. HCl and water-only controls were included. After 4-days exposure in an acidic, anaerobic environment, sclerotial viability, and colonization by culturable fungi or bacteria were assessed with standard procedures. Greenhouse experiments were similarly conducted to evaluate endemic soil populations of Trichoderma spp. following soil exposure to VFAs and Trichoderma spp. populations assessed with standard soil dilution plating onto semi-selective medium. Sclerotial germination was generally reduced by soil exposure to acetic (35.1% germination) or n-butyric (21.9% germination) acids compared to water (74.3% germination) and HCl (62.7% germination). Germination was reduced as VFA concentration increased from 4 to 8 and 16 mmol/kg (39.5, 29.1, and 16.9%, respectively). In amended soils, there was no difference in sclerotial germination compared to non-amended soils, but in the greenhouse experiment there was a Trichoderma spp. population increase of over 300% in amended soil [3.4 × 106 colony forming units (CFU)/g soil] compared to the non-amended soil (9.6 × 105 CFU/g soil). Soil autoclaving had no effect on sclerotial germination at low VFA concentrations, but sclerotial germination was reduced at higher VFA concentrations compared to non-autoclaved soil. Our results suggest that VFAs contribute to sclerotial mortality in strongly acidic soil environments, and mortality is influenced by VFA components and environment. Antifungal activity is less for acetic acid than for n-butyric, and less in non-sterile soil environments more typical of field conditions than in sterile laboratory conditions.


2021 ◽  
pp. 1-10
Author(s):  
Tanner Donahoo ◽  
Lisha Zhang ◽  
Matthew Cutulle ◽  
Abolfazl Hajihassani

Increasing regulations and restrictions regarding on-farm chemical use and growing consumer demands for organic food products warrant the development of efficient biological methods for plant disease control and pest management. Grafting and anaerobic soil disinfestation are two sustainable crop production techniques developed to control and regulate weeds, root-knot nematodes (Meloidogyne incognita), and soilborne pathogens. Therefore, the present study explores the economic impact of using grafting and anaerobic soil disinfestation, independently and in conjunction, to determine the best combination in terms of yield and net returns for producers. This study drew from tomato (Solanum lycopersicum) field trials conducted in 2020 on a 0.5-acre plot at the Clemson Coastal Research and Education Center in Charleston, SC, where five grafting and three anaerobic soil disinfestation treatments were used in combinations for comparisons. Each treatment combination was subjected to sealed (plastic mulch covering a plot punctured 5 weeks after applying anaerobic soil disinfestation treatment) and unsealed (plastic mulch covering a plot punctured immediately after the application of anaerobic soil disinfestation treatment) plot conditions during the anaerobic soil disinfestation phase of plant bed preparation. Treatment combinations with cottonseed meal carbon-sourced anaerobic soil disinfestation were unviable because of lower net returns compared with treatment combinations without anaerobic soil disinfestation in nearly every case. Grafting (‘Roadster’ self-grafted) combined with molasses and chicken manure carbon-sourced anaerobic soil disinfestation under unsealed plot conditions was the most optimal treatment combination in the field trials with the greatest gains (net return per acre) to producers. The positive synergistic effects of combining these methods suggest that grafting and anaerobic soil disinfestation yield better results in conjunction than separately.


2021 ◽  
Vol 5 ◽  
Author(s):  
Utsala Shrestha ◽  
Keagan J. Swilling ◽  
David M. Butler

Efficacy of anaerobic soil disinfestation (ASD) for soilborne plant pathogen suppression is strongly influenced by soil environment and organic amendment attributes. At the same time, these factors influence soil nutrient availability, crop nutrition, and crop performance, but published information on ASD amendment property effects, including carbon to nitrogen (C:N) ratio and C substrate bioavailability, on crop performance and soil nutrient availability is limited. We evaluated ASD amendment effects on soil N availability, crop N status, and solanaceous crop performance in a series of trials: (1) greenhouse/growth chamber study of amendments (primarily molasses/soybean hulls and wheat bran) formulated at 10:1, 20:1, 30:1 and 40:1 C:N ratios (4 mg C g−1 soil), (2) field study with molasses/soybean hull-based amendments at equivalent C:N ratios/C rates (3) on-farm study with molasses/soybean hull-based amendments (4 mg C g−1 soil) compared to grower-standard control, and (4) field study of labile to recalcitrant amendment substrates at 30:1 C:N ratio (~3.4 mg C g−1 soil). ASD amendment C:N ratio strongly influenced soil inorganic N and the lowest (10:1) ratio was associated with highest soil inorganic N at ASD treatment termination in both trials 1 and 2, which often persisted into the cropping phase. Accordingly, the lowest amendment C:N ratio was also associated with the highest biomass (trail 1), leaf tissue N (trial 2), and crop yield (trials 1, 2) among treatments, even with application of recommended fertigation rates to all treatments in the field study. In trial 3, ASD treatment induced higher soil inorganic N and crop yield than the control, but no differences were observed in plant tissue N. In trial 4, more decomposable ASD substrates reduced soil inorganic N at ASD treatment termination, with the highest soil inorganic N associated with the most recalcitrant amendment, but there was no effect on crop yield. ASD amendment C:N ratio, and to a lesser extent, amendment decomposability, exert a strong influence soil inorganic N and crop performance. Optimization of ASD treatments for disease management will require simultaneous optimization of crop nutrition practices to facilitate more holistic, less confounded assessment of crop performance and to facilitate recommendations for grower adoption.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1678
Author(s):  
Daniela Giovannini ◽  
Federica Brandi ◽  
Anna Paola Lanteri ◽  
Luca Lazzeri ◽  
Maria Luigia Maltoni ◽  
...  

In intensive strawberry production, monoculture is a common practice worldwide; however, prolonged replanting can cause plant disorders and jeopardize profitable cultivation of this highly valuable crop. To mitigate replanting problems, the strawberry industry is still highly dependent on chemical fumigation. Given the increasing regulatory restrictions and concerns about human and environmental risks from fumigants use, there is a growing interest in the adoption of effective, non-chemical alternatives. Two non-chemical soil fumigation practices, i.e., anaerobic soil disinfestation (ASD) and bio-fumigation with biocide plants (BIOFUM), were tested against chemical fumigation by chloropicrin + 1,3-dichloropropene mixture (STANDARD) and untreated (UNTREAT) control in a 2-year trial established in a commercial strawberry farm in Southern Italy (40°25’ N, 16°42′ E). Overall, the alternative practices provided consistently better results than UNTREAT; whereas, compared to STANDARD, their performance was significantly different in the two years: in 2018/19 season the alternative practices registered a 20% (ASD) and 39% (BIOFUM) marketable yield loss compared to STANDARD, while in the 2019/20 season yield differences were not significant. Although both practices appear promising as eco-friendly alternatives to chemical fumigation, in this short-term trial ASD performed better than BIOFUM both in terms of yield and fruit size, resulting in a more advanced stage for practical adoption.


Sign in / Sign up

Export Citation Format

Share Document