small noncoding rna
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 51)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Jin Zhang ◽  
Abdallah M. Eteleeb ◽  
Emily B. Rozycki ◽  
Matthew J. Inkman ◽  
Amy Ly ◽  
...  

Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17–35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36–200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17–200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010091
Author(s):  
Tomoko Takahashi ◽  
Steven M. Heaton ◽  
Nicholas F. Parrish

There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics.


2021 ◽  
Vol 21 ◽  
Author(s):  
Afsane Bahrami ◽  
Gordon A. Ferns

: MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules which modulate gene expression post-transcriptionally. miR-148b is a member of miR-148/152 family generally known to be a tumor suppressor via its affect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis for several different cancer types. This review discusses the current evidences regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Danwei Zhang ◽  
Huihua Li ◽  
Kaimo Ding ◽  
Zhen Zhang ◽  
Si Luo ◽  
...  

Schizophrenia (SCZ) is a common and complex psychiatric disease associated with hereditary and environmental risk factors. MicroRNAs (miRNAs or miRs) are small, noncoding RNA molecules that endogenously regulate gene expression. Single nucleotide polymorphisms (SNPs) in related miRNA genes are associated with susceptibility of the disorder. We wonder if the SNPs have influence on the effectiveness of modified electroconvulsive therapy (MECT) for SCZ. rs1625579 within miR-137, rs6577555 within miR-34, and rs2296616 within miR-107 were sequenced in 150 cases and 150 controls to check the potential association between the SNPs and SCZ. Our results showed that allele G in rs1625579 ( p = 0.005 , adjusted   OR = 1.379 , 95 % CI = 1.108 − 1.634 ), allele A in rs6577555 ( p = 0.014 , adjusted   OR = 1.246 , 95 % CI = 1.045 − 1.463 ), allele G in rs2296616 ( p < 0.001 , adjusted   OR = 1.646 , 95 % CI = 1.374 − 1.879 ) are positively associated with the disorder risk. MECT courses did significantly decrease the level of the miRNAs, except for the variant of rs2296616 with the AA genotype. Schizophrenic phenotypes assessed by the positive and negative syndrome scale (PANSS) were improved after MECT, and there was no significant relevance observed between the effectiveness of MECT and the variants of these loci. Thus, our findings indicate that polymorphisms within the loci may be involved in the pathogenesis of SCZ, and MECT is effective and unbiased for patients harboring different genotypes of the loci.


2021 ◽  
Author(s):  
Antoine Cossa ◽  
Sylvain Trépout ◽  
Frank Wien ◽  
Etienne Le Brun ◽  
Florian Turbant ◽  
...  

Bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, thanks to proteins called Nucleoid Associated Proteins (NAPs). The NAP composition of the nucleoid varies during the bacterial life cycle and is growth phase-dependent. Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq belongs to the bridging family of NAPs. Its bridging mechanism relies on the formation of the amyloid-like structure of Hfq C-terminal region. Here, using cryo soft X-ray tomography imaging of native unlabelled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid, especially during the stationary growth phase. Hfq influences both nucleoid volume and absorbance. Hfq cumulates direct effects and indirect effects due to sRNA-based regulation of other NAPs. Taken together, our findings reveal a new role for this protein in nucleoid remodelling that may serve in response to stress conditions and in adapting to changing environments. This implies that Hfq regulates nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Yang ◽  
Xiaoshan Zhang ◽  
Shanshan Chen ◽  
Yue Tao ◽  
Mingzhe Ning ◽  
...  

ObjectiveDysregulation of transfer RNA (tRNA)-derived small noncoding RNA (tsRNA) signatures in human serum has been found in various diseases. Here, we determine whether the signatures of tsRNAs in serum can serve as biomarkers for diagnosis or prognosis of systemic lupus erythematosus (SLE).MethodsInitially, small RNA sequencing was employed for the screening serum tsRNAs obtained from SLE patients, followed by validation with TaqMan probe-based quantitative reverse transcription-PCR (RT-PCR) assay. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic efficacy. The biological functions of tsRNAs were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assay.ResultsWe first analyzed tsRNA signatures in SLE serum and identified that tRF-His-GTG-1 was significantly upregulated in SLE serum. The combination of tRF-His-GTG-1 and anti-dsDNA could serve as biomarkers for diagnosing SLE with a high area under the curve (AUC) of 0.95 (95% CI = 0.92–0.99), sensitivity (83.72%), and specificity (94.19%). Importantly, the noninvasive serum tRF-His-GTG-1 could also be used to distinguish SLE with LN or SLE without LN with AUC of 0.81 (95% CI, 0.73–0.88) and performance (sensitivity 66.27%, specificity 96.15%). Moreover, the serum tsRNA is mainly secreted via exosome and can directly target signaling molecules that play crucial roles in regulating the immune system.ConclusionIn this study, it has been demonstrated for the first time that serum tsRNAs can be employed as noninvasive biomarkers for the efficient diagnosis and prediction of nephritis in SLE.


2021 ◽  
Vol 22 (21) ◽  
pp. 11416
Author(s):  
Maite Caus ◽  
Àuria Eritja ◽  
Milica Bozic

Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.


Author(s):  
Ashutosh Singh ◽  
Ashutosh Kumar Singh ◽  
Rajanish Giri ◽  
Dhruv Kumar ◽  
Rohit Sharma ◽  
...  

MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.


2021 ◽  
Author(s):  
Yan Xu ◽  
Haidong Zou ◽  
Qi Ding ◽  
Yuelan Zou ◽  
Chun Tang ◽  
...  

Diabetic retinopathy (DR) is a specific microvascular complication arising from diabetes, and its pathogenesis is notcompletely understood. tRNA-derived stress-induced RNAs (tiRNAs), a new type of small noncoding RNA generated by specific cleavage of tRNAs, has become a promising target forseveral diseases. However, the regulatory function of tiRNAs in DR and its detailed mechanism remain unknown. Here, we analyzed the tiRNA profiles of normal and DR retinal tissues. The expression level of tiRNA-Val was significantly upregulated in DR retinal tissues. Consistently, tiRNA-Val was upregulated in human retinal microvascular endothelial cells (HRMECs) under high glucose conditions. The overexpression of tiRNA-Val enhanced cell proliferation and inhibited cell apoptosis in HRMECs, but the knockdown of tiRNA-Val decreased cell proliferation and promoted cell apoptosis. Mechanistically, tiRNA-Val, derived from mature tRNA-Val with Ang cleavage, decreased Sirt1 expression level by interacting with sirt1 3'UTR, leading to the accumulation of Hif-1α, a key target for DR. In addition, subretinal injection of adeno-associated virus to knock down tiRNA-Val in DR mice ameliorated the symptoms of DR. Therefore, these data suggest that tiRNA-Val is a potential target in treating diabetic retinopathy.


Author(s):  
Xin Yin ◽  
Azhar Anwar ◽  
Yanbo Wang ◽  
Huanhuan Hu ◽  
Gaoli Liang ◽  
...  

AbstractStudies of human and mammalian have revealed that environmental exposure can affect paternal health conditions as well as those of the offspring. However, studies that explore the mechanisms that meditate this transmission are rare. Recently, small noncoding RNAs (sncRNAs) in sperm have seemed crucial to this transmission due to their alteration in sperm in response to environmental exposure, and the methodology of microinjection of isolated total RNA or sncRNAs or synthetically identified sncRNAs gradually lifted the veil of sncRNA regulation during intergenerational inheritance along the male line. Hence, by reviewing relevant literature, this study intends to answer the following research concepts: (1) paternal environmental factors that can be passed on to offspring and are attributed to spermatozoal sncRNAs, (2) potential role of paternal spermatozoal sncRNAs during the intergenerational inheritance process, and (3) the potential mechanism by which spermatozoal sncRNAs meditate intergenerational inheritance. In summary, increased attention highlights the hidden wonder of spermatozoal sncRNAs during intergenerational inheritance. Therefore, in the future, more studies should focus on the origin of RNA alteration, the target of RNA regulation, and how sncRNA regulation during embryonic development can be sustained even in adult offspring.


Sign in / Sign up

Export Citation Format

Share Document