potted plants
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 125)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 28 (1) ◽  
pp. 19-35
Author(s):  
Mehmet Uğur Kahraman ◽  
Yeşim Yalçın Mendi ◽  
Şenay Karabıyık ◽  
Henrik Vlk Lütken ◽  
Bruno Trevenzoli Favero

Abstract Kalanchoë cultivars rank as one of the most sold potted ornamental plants in the world. Among its key features that sustain high market interest are the long flowering period, abundance of flowers, thick and glossy leaves, easy maintenance and less water requirement compared to other potted plants. In breeding studies of Kalanchoë, plants with different flower colors such as white, cream, yellow, orange, red, pink and purple were developed. Moreover, double-flowered cultivars (comprising a large number of petals), more compact and cultivars with larger flowers were also obtained. Novel morphological characteristics are always in high demand in the market of ornamental plants. Increasing the variation in the gene pool with different species played a major role in the development of these characteristics. Nowadays, not only potted cultivars are launched but also cut flower cultivars have been developed and presented to consumers. Besides conventional breeding and interspecific hybridization, biotechnological methods, which have a promising future, are used to develop morphological characteristics of Kalanchoë.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Evangelos Axiotis ◽  
Apostolis Angelis ◽  
Lemonia Antoniadi ◽  
Eleftherios A. Petrakis ◽  
Leandros A. Skaltsounis

Cymbidium is one of the most popular genera in Orchidaceae family, commercialized either as loose flowers or as potted plants in floriculture worldwide. The non-marketable parts are typically discarded (e.g., unsuitable flowers, leaves, pseudobulbs, roots), generating an enormous quantity of unutilized biomass. The above by-products were studied through phytochemical analysis and investigated for their dermo-cosmetic potential. The initial antioxidant, anti-tyrosinase, anti-elastase, and anti-collagenase assays of the total extracts indicated that the pseudobulb and root ethyl acetate extracts were the most potent. Those extracts were then submitted to chromatographic separation leading to the isolation of 16 secondary metabolites (four phenanthrenes, three 1,4-phenanthrenquinones, three dibenzyls, two phenolic acid derivatives, two sterols, one dehydrodiconiferyl alcohol derivative, and one simple phenolic compound), including 6-hydroxy-5,7-dimethoxy-1,4-phenanthrenequinone (cymbisamoquinone), which was identified as a new natural product. In parallel, 48 metabolites were identified by UPLC-HRMS analysis of the extracts. The biological evaluation of the isolated compounds revealed that gigantol and tristin present important anti-tyrosinase activity, while bulbophyllanthrin, 3-hydroxy-2,4,7-trimethoxy-phenanthrene, marylaurencinol A, 5-hydroxy-2-methoxy-1,4-phenanthrenequinone, and ephemeranthroquinone B show dose-dependent anti-collagenase activity. In contrast to isolated metabolites, which may act selectively on specific enzymes, the initial total extracts exhibited inhibitory activity against tyrosinase, elastase, and collagenase enzymes, thus showing better prospects for use in dermo-cosmetic formulations.


2021 ◽  
Vol 12 (1) ◽  
pp. 284
Author(s):  
Tatiana Armijos-Moya ◽  
Pieter de Visser ◽  
Marc Ottelé ◽  
Andy van den Dobbelsteen ◽  
Philomena M. Bluyssen

Potted plants have been reported to uptake VOCs and help “cleaning” the air. This paper presents the results of a laboratory study in which two species of plants (peace lily and Boston fern) and three kinds of substrates (expanded clay, soil, and activated carbon) were tested and monitored on their capacity to deplete formaldehyde and CO2 in a glass chamber. Formaldehyde and CO2 were selected as indicators to evaluate the biofiltration efficacy of 28 different test conditions; relative humidity (RH) and temperature (T) were monitored during the experiments. To evaluate the efficacy of every test, the clean air delivery rate (CADR) was calculated. Overall, soil had the best performance in removing formaldehyde (~0.07–0.16 m3/h), while plants, in particular, were more effective in reducing CO2 concentrations (peace lily 0.01m3/h) (Boston fern 0.02–0.03 m3/h). On average, plants (~0.03 m3/h) were as effective as dry expanded clay (0.02–0.04 m3/h) in depleting formaldehyde from the chamber. Regarding air-cleaning performance, Boston ferns presented the best performance among the plant species, and the best performing substrate was the soil.


Plant Disease ◽  
2021 ◽  
Author(s):  
Wu Zhang ◽  
Xiu Li Song

The pygmy date palm (Phoenix roebelenii) is a popular ornamental plant widely cultivated in tropical regions as well as in China. In June 2018, a new leaf spot symptoms were observed on P. roebelenii in several different parks in Zhanjiang City of China. The early symptoms of infected leaves were presented with small, round, pale brown spots. As the size of these spots increased, they coalesced to form larger irregular necrotic lesions surrounded by dark brown edges, which eventually led to leaf wilted and defoliation. A filamentous fungus was consistently isolated from infected leaf samples. Colonies on PDA at 25°C (12 h light/dark) were initially white with abundant aerial mycelium, which turned fluffy and dark olivaceous after one-week culture. Pycnidial conidiomata were black and globose and formed on pine needles in water agar at 25°C (12 h light/dark) after 21 days. Conidiogenous cells were hyaline, cylindrical, holoblastic. The conidia was ovoid to ellipsoid, thick-walled, which was initially hyaline and aseptate, later turned into dark brown and 1-septate with a striate appearance to conidia, 11.6~25.0 μm×9.6~12.0 μm (av. 20.4 μm×10.1 μm). For molecular identification, the partial sequences of internal transcribed spacer (ITS) regions, translation elongation factor (EF-1α) and β-tubulin (TUB) genes of two representative isolates RYCK-1, RYCK-2 were amplified and sequenced using primer pairs ITS/ITS4 (White et al. 1990), EF-688F/EF-986R (Carbone and Kohn 1999), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The sequences of the above three loci of the two isolates (accession nos. ITS, OK329968 and OK329969; EF-1α, OK338067 and OK338068; TUB, OK338069 and OK338070) showed 98.4-100.0 % identity with the existing sequences of ex-type culture CBS 122528 of N. phoenicum. A multilocus phylogenetic analysis of the three loci concatenated sequences using the maximum likelihood method showed the isolates that belongs to N. phoenicum. Based on the morphological characteristics and molecular analysis of the isolates, the fungus was identified as N. phoenicum (Phillips et al. 2008). To confirm pathogenicity, five one-year-old potted plants were used for each isolate (RYCK-1 and RYCK-2) and the plants were inoculated by pricking the epidermis of the leaf with a needle. Five leaves of each plant were sprayed with 100 µl of a conidial suspension (1 × 106 conidia/ml) to the wounded surface for each plant. Sterilized distilled water was used as the control and the experiment was repeated. All the plants were incubated at 26 ± 2°C (12 h light/dark) and covered with plastic bags to maintain constant high humidity. After 14 days, all the inoculated leaves showed the same symptoms as those observed in the original diseased plants, but the control plants remained health. The reisolated fungus was identified as N. phoenicum by morphological and molecular characteristics. N. phoenicum is an important pathogen of Phoenix species plants worldwide, which have been reported to cause shoot blights and stalk rots on P. dactylifera and P. canariensis in Greece (Ligoxigakis et al. 2013) and root rot on P. dactylifera in Qatar (Nishad and Ahmed 2020). To our knowledge, this is first report N. phoenicum causing leaf spot on P. roebelenii in China.


Author(s):  
A. Sabina ◽  
C. Sameena

Background: The higher temperatures resulted due to global warming might bring about changed geographical distribution of crops and even in the season. In other words, heat stress is likely to be an eventual challenge for crop production in general and for potatoes in particular. Thus, imparting heat tolerance in potato cultivars is of utmost importance. Methods: The experiment was conducted in pots and the ambient temperature was approximately 33±0.5oC which constitutes heat stress for potato crop. Potato cultivars namely Kufri Ashoka (relatively heat susceptible) and Kufri Surya (relatively heat tolerant), cultivars, were used in this experiment. The observations were made on the fourth leaf from the top of the mother shoot in potted plants which was fully expanded; data collected were subjected to statistical analysis by using analysis of variance under completely randomized design. Result: Data recorded on different morphological and stomatal attributes indicate that there was significant difference between susceptible and tolerant cultivars of potato wherein Kufri Surya showed better shoot/root ratio, stomatal density as well as stomata index as compared to Kufri Ashoka.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Kirstin Wurms ◽  
Annette Ah Chee ◽  
Kate Stannard ◽  
Rachelle Anderson ◽  
Dwayne Jensen ◽  
...  

Latania scale insect is a pest of global significance affecting kiwifruit. The sessile insect (life stage: settled crawler—mature adult) is covered with a waxy cap that protects it from topical pesticides, so increasingly, a selection of resistant cultivars and application of elicitors are being used in pest control. Thus far, the application of a salicylic acid (SA) phytohormone pathway elicitor, acibenzolar-S-methyl (ASM), has been shown to reduce insect development (as indicated by cap size) on one kiwifruit cultivar (‘Hayward’). To investigate how cultivar-associated resistance is affected by the ability to respond to different elicitors, we measured phytohormones (by LCMS) and gene expression (by qPCR and NanoString) on latania scale-tolerant ‘Hort16A’ and susceptible ‘Hayward’ kiwifruit over two seasons. Potted plants in the presence/absence of settled latania scales were treated with ASM (0.2 g/L) or methyl jasmonate (MeJA, 0.05% v/v), representing elicitors of the SA and JA signalling pathways, respectively. ‘Hort16A’ cultivar resistance to latania scale was associated with elevated expression of SA and SA-related defence genes (PR1 and two PR2 family genes) in the ASM treatment. MeJA treatments did not significantly affect insect development in ‘Hayward’ (latania scale did not survive on ‘Hort16A’) and did not correlate with phytohormone and gene expression measurements in either cultivar. ‘Hayward’ had greater concentrations than ‘Hort16A’ of inert storage forms of both SA and JA across all treatments. This information contributes to the selection of tolerant cultivars and the effective use of elicitors for control of latania scale in kiwifruit.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhenlei Zheng ◽  
Jian Cao ◽  
Yanyue Li ◽  
Tingting Luo ◽  
Tianhui Zhu ◽  
...  

Codonopsis tangshen Oliv. belongs to the Campanulaceae, it is one of the most important economically medicinal materials in China.Which is used in medical and agricultural applications (Wu Q N, et al. 2020). In August 2019, root rot of C. tangshen was firstly observed in Fengjie, Chongqing city, southwest China (30°45′ 59″ N; 109°36′36″ E; ), causing approximately 20% yield loss. At the initial stage of the disease, the above-ground stems and leaves turn yellow, and brown to black spots of different sizes appear at the base or root of the stem. With the further development of the disease, the above-ground leaves gradually turn yellow as the diseased spots rot from bottom to top, so that they die, and the diseased spots on the roots expand and begin to rot. Generally, they gradually rot from the bottom up, but the vascular bundles are occasionally normal. If the symptoms of C.tangshen started too late, and the root has not completely rotted by late autumn (late October to early November), the rest part of C.tangshen root will not continue to rot, and it is called half C.tangshen. In the next spring, the halfC. tangshen can continue to sprout, but it will continue to rot, which will seriously affect the yield and quality. In order to identify the pathogen, 25 samples of diseased plants were collected and symptomatic rhizome tissues were surface disinfected with 0.1% HgCl2 solution for 30s, rinsed in sterilized water 3 times, placed on potato dextrose agar (PDA), and incubated at 25℃±1°C in the dark. On the PDA, after seven days of culture, the center appeared light yellow, the edges were white, and the aerial hyphae were felt-like. The surface of the colony was reddish-brown and the margins were white and regular. The conidiophores were simple, usually born on the lateral or apical sides of aerial mycelium, unbranched, or minimally branched. Conidia were abundant, cylindrical, or rod-shaped, straight or slightly curved, usually with 1–3 septa. Macroconidia varied in size depending on the number of cells as follows: one-septate 15.3–26.3×4.2–7.3 μm(n=50)μm, two-septate 20.5-30.5×4.9-7.8μm (n=50), and three-septate 29.3–38.5×5.5–7.4 μm (n=50), round at both ends. For molecular identification, DNA was extracted from a representative isolate using a fungus genomic DNA extraction kit (Solarbio, Beijing, China). The internal transcribed spacer (ITS)(ITS1/ITS4, White, et al. 1990), beta-tubulin (TUB2)(BT2A/BT2B, O’Donnell and Cigelnik 1997), translation elongation factor 1-a (TEF) ( EF446F/EF1035R, Inderbitzin et al. 2005), DNA-dependent RNA polymerase subunit II gene(RPB2, O'Donnell K., et al. 2010 ) and histone H3(HIS3) (CYLH3F/CYLH3R, Crous, et al. 2004b) were amplified. BLAST results indicated that the ITS, TUB2, TEF, HIS3, and RPB2 sequences (GenBank MW392103, MW386994, MW386995 MW392103, and MW915473) showed 96% to 100% identity with Ilyonectria robusta sequences at NCBI (GenBank KU350726, JF335378, MN833103, MN833113, KM232336). The phylogenetic tree was inferred from the combined datasets (ITS, TEF1, TUB, and HIS3) from members of the I. robusta species complex analyzed in this study (Cabral et al. 2012 ). To complete Koch's postulates, a conidial suspension (106 spores/ml) collected from isolate CQ13 was irrigated onto fifteen annual C.tangshen potted plants. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, the plants were cultured for 9 days at 75% relative humidity and 25 ℃. The inoculated plants showed symptoms similar to those observed in the field. In contrast, the negative control plants were healthy and unaffected. I. robusta was re-isolated from the infected tissues and identified by morphological characteristics and DNA sequence analysis. To our knowledge, this is the first report of I. robusta causing root rot disease of C.tangshen in China. Our results may help to take appropriate steps to control the disease in the commercial area of C.tangshen. The authors declare no conflict of interest.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1255
Author(s):  
Marco Hernandez Velasco

High efficacy LED lamps combined with adaptive lighting control and greenhouse integrated photovoltaics (PV) could enable the concept of year-round cultivation. This concept can be especially useful for increasing the production in the Nordic countries of crops like herbaceous perennials, forest seedlings, and other potted plants not native of the region, which are grown more than one season in this harsh climate. Meteorological satellite data of this region was analyzed in a parametric study to evaluate the potential of these technologies. The generated maps showed monthly average temperatures fluctuating from −20 °C to 20 °C throughout the year. The natural photoperiod and light intensity also changed drastically, resulting in monthly average daily light integral (DLI) levels ranging from 45–50 mol·m−2·d−1 in summer and contrasting with 0–5 mol·m−2·d−1 during winter. To compensate, growth room cultivation that is independent of outdoor conditions could be used in winter. Depending on the efficacy of the lamps, the electricity required for sole-source lighting at an intensity of 300 µmol·m−2·s−1 for 16 h would be between 1.4 and 2.4 kWh·m−2·d−1. Greenhouses with supplementary lighting could help start the cultivation earlier in spring and extend it further into autumn. The energy required for lighting highly depends on several factors such as the natural light transmittance, the light threshold settings, and the lighting control protocol, resulting in electric demands between 0.6 and 2.4 kWh·m−2·d−1. Integrating PV on the roof or wall structures of the greenhouse could offset some of this electricity, with specific energy yields ranging from 400 to 1120 kWh·kW−1·yr−1 depending on the region and system design.


Author(s):  
Suwati Ummat ◽  
Marianah Marianah ◽  
Muanah Muanah ◽  
Ahmad Akromul Huda ◽  
Desy Ambar Sari ◽  
...  

Household waste contributes to the volume of waste. In general, household waste is easily biodegradable and difficult to decompose. Household products that are hard to decompose are generally plastic and plastic bottles predominantly. The difficulty of decomposing household plastic waste requires serious handling, so it is necessary to provide assistance for processing plastic waste into useful creations. One of them becomes ecobric. There are two methods of this activity, namely direct counseling and training. The results obtained after the community service activities were completed was that they were able to improve community skills in processing plastic waste into ecobrics. Furthermore, ecobrics are created into potted plants and other forms of creation. In addition, after this activity is carried out, it can reduce the movement of plastic waste to the final disposal site (TPA), so that the community hopes that this activity will continue to be transmitted to other places to create a clean and free environment from plastic waste.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2401
Author(s):  
Maria Papafotiou ◽  
Aikaterini N. Martini ◽  
Eleonora Papanikolaou ◽  
Eleftherios G. Stylias ◽  
Anastasios Kalantzis

Aiming to obtain Salvia hybrids with ornamental value and high drought resistance, for xeriscaping, crossbreeding was made with Greek Salvia species. S. fruticosa and S. officinalis when used as seed parent were successfully crossed with S. pomifera ssp. pomifera, S. ringens and S. tomentosa, while when used as pollen parent it only succeeded between S. fruticosa and S. tomentosa. The growth of S. fruticosa and the four hybrids, S. officinalis × S. pomifera, S. officinalis × S. tomentosa, S. officinalis × S. ringens and S. fruticosa × S. ringens, selected for their ornamental traits, was evaluated under limited irrigation and modification of the substrate with attapulgite clay. The hybrids S. officinalis × S. ringens and S. officinalis × S. tomentosa developed a compact plant shape and most lateral shoots, desirable characteristics for potted plants and xeriscaping. All hybrids, especially S. officinalis × S. pomifera and S. officinalis × S. tomentosa, survived water stress better than S. fruticosa. Modification of the substrate with attapulgite, under limited irrigation, caused a decrease in the above ground/root biomass ratio in some hybrids and in S. fruticosa increased the dry weight of the root indicating increased drought resistance.


Sign in / Sign up

Export Citation Format

Share Document